Production of 1,5-Dihydroxy-3-Methoxy-7-Methylanthracene-9,10-Dione by Submerged Culture of Shiraia bambusicola

  • Cai, Yujie (Key Laboratory of Industrial Biotechnology, Jiangnan University) ;
  • Ding, Yanrui (School of Information Technology, Jiangnan University) ;
  • Tao, Guanjun (Testing & Analysis Center, Jiangnan University) ;
  • Liao, Xiangru (School of Biotechnology, Jiangnan University)
  • Published : 2008.02.29

Abstract

1,5-Dihydroxy-3-methoxy-7-methylanthracene-9,10-dione (shiraiarin) is a kind of antitumor and antibacterial anthraquinone, and was produced for the first time from the submerged fermentation of Shiraia bambusicola, as confirmed by ESI-MS and NMR. The production of shiraiarin was significantly influenced when varying the carbon source, and a high amount of shiraiarin was only achieved when using lactose. The production of shiraiarin was also stimulated when using $NaNO_3$ as the nitrogen source, whereas other nitrogen sources inhibited its production. Shiraiarin was formed during the stationary phase with a pH value higher than 8. The production of shiraiarin was inhibited by sporulation.

Keywords

References

  1. Adrio, J. L. and A. L. Demain. 2003. Fungal biotechnology. Int. Microbiol. 6: 191-199 https://doi.org/10.1007/s10123-003-0133-0
  2. Alvo, A. M., R. A. Wilson, J. W. Bok, and N. P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. R 66: 447-459 https://doi.org/10.1128/MMBR.66.3.447-459.2002
  3. Archer, D. B. and J. F. Peberdy. 1997. The molecular biology of secreted enzyme production by fungi. Crit. Rev. Biotechnol. 17: 273-306 https://doi.org/10.3109/07388559709146616
  4. Berger, S. and S. Braun. 2004. 200 and More NMR Experiments: A Practical Course. Wiley-VCH, Weinheim
  5. Brakhage, A. A. 1998. Molecular regulation of $\beta-lactam $ biosynthesis in filamentous fungi. Microbiol. Mol. Biol. R 62: 547-585
  6. Chen, W. S., Y. T. Chen, X. Y. Wan, E. Friedrichs, H. Puff, and E. Breitmaier. 1981. Structure of hypocrellin and its photooxidation product peroxyhypocrellin. Liebigs Ann. Chem. 10: 880-885
  7. Cho, Y. J., J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun. 2002. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195-202 https://doi.org/10.1046/j.1472-765X.2002.01168.x
  8. Cole, R. B. 1997. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications. Wiley, New York
  9. Demain, A. L. 1986. Regulation of secondary metabolism in fungi. Pure Appl. Chem. 58: 219-226 https://doi.org/10.1351/pac198658020219
  10. Demain, A. L. 1996. Fungal secondary metabolism: Regulation and functions, pp. 233-254. In B. Sutton (ed.), A Century of Mycology. Cambridge University Press, Cambridge, U.S.A.
  11. Demain, A. L. 1998. Induction of microbial secondary metabolism. Int. Microbiol. 1: 259-264
  12. Denison, S. H. 2002. pH regulation of gene expression in fungi. Fungal. Genet. Biol. 29: 61-71 https://doi.org/10.1006/fgbi.2000.1188
  13. Diwu, Z. J. 1995. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 61: 529-539 https://doi.org/10.1111/j.1751-1097.1995.tb09903.x
  14. Duran N., M. F. Teixeira, R. De Conti, and E. Esposito. 2002. Ecological-friendly pigments from fungi. Crit. Rev. Food. Sci. Nutr. 42: 53-66 https://doi.org/10.1080/10408690290825457
  15. Falk, H. and G. Schoppel. 1991. A synthesis of emodin anthrone. Monatsh. Chem. 122: 739-744 https://doi.org/10.1007/BF00811474
  16. Falk, H., J. Meyer, and M. Oberreiter. 1993. A convenient semisynthetic route to hypericin. Monatsh. Chem. 124: 339-341 https://doi.org/10.1007/BF00810594
  17. Grimm, L. H., S. Kelly, R. Krull, and D. C. Hempel. 2005. Morphology and productivity of filamentous fungi. Appl. Microbiol. Biotechnol. 69: 375-384 https://doi.org/10.1007/s00253-005-0213-5
  18. Higgins, C. F., C. J. Dorman, D. A. Stirling, L. Sutherland, I. R. Booth, G. May, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569-584 https://doi.org/10.1016/0092-8674(88)90470-9
  19. Hwang-Huei, W. and C. Jing-Gung. 1997. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr. Microbiol. 35: 262-266 https://doi.org/10.1007/s002849900250
  20. Jain, S. C., R. Jain, R. A. Sharma, and F. Capasso. 1997. Pharmacological investigation of Cassia italica. J. Ethnopharmacol. 58: 135-142 https://doi.org/10.1016/S0378-8741(97)00091-3
  21. Julia, P., L. Martinkova, J. Lolinski, and F. Machek. 1994. Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb. Tech. 16: 996-1001 https://doi.org/10.1016/0141-0229(94)90011-6
  22. Karem, K. and J. W. Foster. 1993. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol. Microbiol. 10: 75- 86 https://doi.org/10.1111/j.1365-2958.1993.tb00905.x
  23. Kazmi, M. H., A. Malik, S. Hameed, N. Akhtar, and S. N. Ali. 1994. An anthraquinone derivative from Cassia italica. Phytochemistry 36: 761-763 https://doi.org/10.1016/S0031-9422(00)89812-X
  24. Kong, L. D., Y. Cai, W. W. Huang, C. H. Cheng, and R. X. Tan. 2000. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol. 73: 199-207 https://doi.org/10.1016/S0378-8741(00)00305-6
  25. Koyama, J., M. Inoue, I. Morita, N. Kobayashi, T. Osakai, H. Nishino, and H. Tokuda. 2006. Correlation between reduction potentials and inhibitory effects on Epstein-Barr virus activation by emodin derivatives. Cancer Lett. 241: 263-267 https://doi.org/10.1016/j.canlet.2005.10.043
  26. Kraus, G. A. and W. J. Zhang. 1995. The synthesis and biological evaluation of hypericin analogs. Bioorg. Med. Chem. Lett. 22: 2633-2636
  27. Kubicek, C. P. 1987. The role of the citric acid cycle in fungal organic acid fermentations. Biochem. Soc. Symp. 54: 113-126
  28. Kurobane, I., L. C. Vining, A. G. McInnes, and N. N. Gerber. 1980. Metabolites of Fusarium solani related to dihydrofusarubin. J. Antibiot. 39: 205-214
  29. Ma, G. Y., S. I. Khan, M. R. Jacob, B. L. Tekwani, Z. Li, D. S. Pasco, L. A. Walker, and I. A. Khan. 2004. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob. Agents Chemother. 48: 4450-4452 https://doi.org/10.1128/AAC.48.11.4450-4452.2004
  30. Medentsev, A. G. and V. K. Akimenko. 1992. Mechanism of phytotoxic action of naphthoquinone pigments of the fungus Fusarium decemcellulare. Phytochemistry 31: 77-79 https://doi.org/10.1016/0031-9422(91)83009-A
  31. Medentsev, A. G. and V. K. Akimenko. 1998. Naphthoquinone metabolites of the fungi. Phytochemistry 61: 935-959
  32. Mizushima, T., S. Natori, and K. Sekimizu. 1993. Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol. Gen. Genet. 238: 1-5
  33. Olsson, P. A. and A. Johansen. 2000. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol. Res. 104: 429-434 https://doi.org/10.1017/S0953756299001410
  34. Park, C., B. Bennion, I. E. Francois, K. K. Ferket, B. P. Cammue, K. Thevissen, and S. B. Levery. 2005. Neutral glycolipids of the filamentous fungus Neurospora crassa: Altered expression in plant defensin-resistant mutants. J. Lipid Res. 46: 759-768 https://doi.org/10.1194/jlr.M400457-JLR200
  35. Paterson, R. R. 2006. Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67: 1985-2001 https://doi.org/10.1016/j.phytochem.2006.07.004
  36. Teich, L., K. S. Daub, V. Krugel, L. Nissler, R. Gebhardt, and K. Eger. 2004. Synthesis and biological evaluation of new derivatives of emodin. Bioorg. Med. Chem. 12: 5961-5971 https://doi.org/10.1016/j.bmc.2004.08.024
  37. Wu, H. M., X. F. Lao, Q. W. Wang, and R. R. Lu. 1989. The shiraiachromes: Novel fungal perylenequinone pigments from S. bambusicola. J. Nat. Prod. 52: 948-951 https://doi.org/10.1021/np50065a006