Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Ko-Eun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Jeong-Kug (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Park, Byoung-Chul (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2008.02.29

Abstract

The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Keywords

References

  1. Baek, C.-H. and K.-S. Kim. 2003. lacZ- and aph-based reporter vectors for in vivo expression technology. J. Microbiol. Biotechnol. 13: 872-880
  2. Bauer, C. E., S. Elsen, L. R. Swem, D. L. Swem, and S. Masuda. 2003. Redox and light regulation of gene expression in photosynthetic prokaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358: 147-154 https://doi.org/10.1098/rstb.2002.1189
  3. De Kievit, T. R. and B. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839-4849
  4. Dunny, G. M. and S. C. Winans. 1999. Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C
  5. Elsen, S., L. R. Swem, D. L. Swem, and C. E. Bauer. 2004. RegB/RegA, a highly conserved redox-responding global twocomponent regulatory system. Microbiol. Mol. Biol. Rev. 68: 263-279 https://doi.org/10.1128/MMBR.68.2.263-279.2004
  6. Fuqua, C., S. C. Winans, and E. P. Greenberg. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell densityresponsive transcriptional regulators. J. Bacteriol. 176: 269-275 https://doi.org/10.1128/jb.176.2.269-275.1994
  7. Fuqua, C., M. R. Parsek, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439-468 https://doi.org/10.1146/annurev.genet.35.102401.090913
  8. Gavira, M., D. Roldan, F. Castillo, and C. Moreno-Vivian. 2002. Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J. Bacteriol. 184: 1693-1702 https://doi.org/10.1128/JB.184.6.1693-1702.2002
  9. Gonzalez, J. and N. D. Keshavan. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70: 859-875 https://doi.org/10.1128/MMBR.00002-06
  10. He, X. and C. Fuqua. 2006. Rhizosphere communication: Quorum sensing by the rhizobia. J. Microbiol. Biotechnol. 16: 1661-1677
  11. Henke, J. M. and B. L. Bassler. 2004. Bacterial social engagement. Trends Cell Biol. 14: 648-656 https://doi.org/10.1016/j.tcb.2004.09.012
  12. Jang, M., B. C. Park, D. H. Lee, C. W. Kho, S. Cho, B. R. Lee, and S. G. Park. 2006. Proteome analysis of Bacillus subtilis when overproducing secretory protein. J. Microbiol. Biotechnol. 16: 368-373
  13. Jeffke, T., N. H. Gropp, C. Kaiser, C. Grzesik, B. Kusian, and B. Bowein. 1999. Mutational analysis of the cbb operon $(CO_{2}assimilation)$ promoter of Ralstonia eutropha. J. Bacteriol. 181: 4374-4380
  14. Kim, E.-J., M.-S. Kim, and J. K. Lee. 2007. Phosphatidylcholine is required for the efficient formation of photosynthetic membrane and B800-850 light-harvesting complex in Rhodobacter sphaeroides. J. Microbiol. Biotechnol. 17: 373-377
  15. Kim, J. H. and J. K. Lee. 1997. Cloning and expression of gene coding for poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.4.1 in Escherichia coli. J. Microbiol. Biotechnol. 7: 229-236
  16. Lake, M. W., C. A. Temple, K. V. Rajagopalan, and H. Shindelin. 2000. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275: 40211-40217 https://doi.org/10.1074/jbc.M007406200
  17. Lee, J. K. and S. Kaplan. 1995. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence. J. Biol. Chem. 270: 20453-20458 https://doi.org/10.1074/jbc.270.35.20453
  18. Lee, K.-E., J.-S. Bang, C.-H. Baek, D.-K. Park, W. Hwang, S. H. Choi, and K.-S. Kim. 2007. IVET-based identification of virulence factors in Vibrio vulnificus MO6-24/O. J. Microbiol. Biotechnol. 17: 234-243
  19. Leimkuhler, S., S. Angermuller, G. Schwarz, R. R. Mendel, and W. Klipp. 1999. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. J. Bacteriol. 181: 5930-5939
  20. Nealson, K. H., T. Platt, and J. W. Hastings. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313-322
  21. Ouchane, S. and S. Kaplan. 1999. Topological analysis of the membrane-localized redox-responsive sensor kinase PrrB from Rhodobacter sphaeroides 2.4.1. J. Biol. Chem. 274: 17290-17296 https://doi.org/10.1074/jbc.274.24.17290
  22. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2007. Production of acyl-homoserine lactone quorum sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-233
  23. Prentki, P. and H. M. Krisch. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-313 https://doi.org/10.1016/0378-1119(84)90059-3
  24. Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaeffer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179: 7530-7537 https://doi.org/10.1128/jb.179.23.7530-7537.1997
  25. Rees, D. C., H. Komiya, and T. O. Yeates. 1989. The bacterial photosynthetic reaction center as a model for membrane proteins. Annu. Rev. Biochem. 58: 607-633 https://doi.org/10.1146/annurev.bi.58.070189.003135
  26. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  27. Shah, D. S. H., S. L. Porter, A. C. Martin, P. A. Hamblin, and J. P. Armitage. 2000. Fine tuning bacterial chemotaxis: Analysis of Rhodobacter sphaeroides behavior under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY gene. EMBO J. 19: 4601-4613 https://doi.org/10.1093/emboj/19.17.4601
  28. Shaw, D. P., G. Ping, S. L. Daly, C. Cha, J. E. Cronan Jr., K. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036-6041
  29. Simon, R., U. Priefer, and A. Puhler. 1993. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology 28: 37-45
  30. Sistrom, W. R. 1962. The kinetic of the synthesis of photopigment in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616 https://doi.org/10.1099/00221287-28-4-607
  31. Sitnikov, D. M., J. B. Schineller, and T. O. Baldwin. 1995. Transcriptional regulations of bioluminescence genes from Vibrio fischeri. Mol. Microbiol. 17: 801-812 https://doi.org/10.1111/j.1365-2958.1995.mmi_17050801.x
  32. Stein, M. A., A. Schafer, and F. Giffhoron. 1997. Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J. Bacteriol. 179: 6335-6340 https://doi.org/10.1128/jb.179.20.6335-6340.1997
  33. Whitehead, N. A., A. M. L. Barnard, H. Slater, N. J. L. Simpson, and G. P. C. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365-404 https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  34. Williams, J. C., L. A. Steiner, G. Feher, and M. I. Simon. 1984. Primary structure of the L subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA 81: 7303-7307
  35. Yuvaniyama, P., J. N. Agar, V. L. Cash, M. K. Johnson, and D. R. Dean. 2000. NifS-directed assembly of a transient [2Fe- 2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97: 599-604
  36. Zeilstra-Ryalls, J., M. Gomelsky, J. M. Eraso, A. Yeliseev, J. O'Gara, and S. Kaplan. 1998. Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol. 180: 2801-2809