Antioxidant and Antimicrobial Effects of Extract with Water and Ethanol of Oriental Melon (Cucumis melo L. var makuwa Makino)

참외 (Cucumis melo L. var makuwa Makino)의 물과 에탄올 추출물의 항산화 및 항균효과

  • Shin, Yong-Seub (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Lee, Ji-Eun (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Yeon, Il-Kweon (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Do, Han-Woo (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Cheung, Jong-Do (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Kang, Chan-Ku (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Choi, Seng-Yong (Seongju Fruit Vegetable Experiment Station, Gyeongbuk AR&ES) ;
  • Youn, Sun-Joo (Biofarmer Co. Ltd.) ;
  • Cho, Jun-Gu (Biofarmer Co. Ltd.) ;
  • Kwoen, Dae-Jun (Department of Oriental Medicine Resource, Asia University)
  • 신용습 (경북농업기술원 성주과채류시험장) ;
  • 이지은 (경북농업기술원 성주과채류시험장) ;
  • 연일권 (경북농업기술원 성주과채류시험장) ;
  • 도한우 (경북농업기술원 성주과채류시험장) ;
  • 정종도 (경북농업기술원 성주과채류시험장) ;
  • 강찬구 (경북농업기술원 성주과채류시험장) ;
  • 최성용 (경북농업기술원 성주과채류시험장) ;
  • 윤선주 ((주)바이오파머) ;
  • 조준구 ((주)바이오파머) ;
  • 권대준 (아시아대학교 한약자원학과)
  • Published : 2008.09.30

Abstract

The biological activities of water and ethanol extracts from different fruit parts, such as peel, flesh, and placenta of oriental melon were investigated. The total phenolic concentration of water extract was the highest such as 151.64 ${\mu}g/g$ in the peel, also that of ethanol extract was 224.77 ${\mu}g/g$ in the peel, respectively. The total flavonoid content in the water and ethanol extracts were high such as 45.53 ${\mu}g/g$ and 67.16 ${\mu}g/g$ of peel, respectively. In the physiological activities, DPPH in the water and ethanol extracts were high such as 25.0% and 83.3% of peel in 1% concentration. Extract of peel was higher than those of flesh and placenta. ABTS in the water extracts was 79.2% of peel, 57.6% of flesh and 74.0% of placenta in 1% concentration. Ethanol extracts was 99.9% of peel, 52.1% of flesh and 41.2% of placenta in 1% concentration. In addition, xanthine oxidase inhibitory activity and ${\alpha}$-Glucosidase inhibition activity of the peel of water and ethanol extracts appeared to be higher than those of placenta and flesh. This study showed that the antioxidant and ${\alpha}$-Glucosidase inhibition activity of peel extracts were higher than those of placenta and flesh. Also, the antimicrobial effect of ethanol extract from different fruit parts was shown only on Streptococcus agalactiae.

본 연구에서는 참외의 부위별 물 및 알코올 추출물의 항산화효과, ${\alpha}$-Glucosidase 저해활성 및 항균효과를 조사하였다. 총 phenol 함량을 측정한 결과 물 추출물에서는 껍질이 151.64 ${\mu}g/g$, 에탄올 추출물에서는 껍질이 224.77 ${\mu}g/g$로 가장 높은 페놀함량을 나타내었다. 총 flavonoid 함량은 껍질이 물 추출물의 경우 45.53 ${\mu}g/g$, 에탄올 추출은 338.37 67.16 ${\mu}g/g$로 가장 높게 나타내었다. 참외의 항산화 효과는 물 추출물의 경우 1%에서 껍질이 25%로 가장 높았으며, 에탄을 추출은 1%에서 껍질이 83.3로 가장 높은 전자공여능을 나타내었으며, 과육과 태좌는 20% 미만의 낮은 활성을 나타내었다. ABTS는 물 추출물은 1%에서 껍질이 79.2%로 가장 높았으며, 과육이 57.6%, 태좌가 74.0%로 50%이상의 활성을 나타내었고, 에탄올추출물은 99.9%로 껍질이 가장 높게 나타났고, 과육과 태좌는 52.1%, 41.2%의 활성을 보였으며, Xanthine oxidase의 저해활성의 경우 1%에서 껍질이 물 추출물이 29.3%, 에탄올추출물이 30.5%의 가장 높은 활성을 보였지만, 비교적 낮은 저해율을 나타내었다. ${\alpha}$-Glucosidase 저해활성을 측정한 결과 1%에서 열수 추출물은 25.9%, 에탄올 추출물은 37.5%의 활성을 보인 껍질이 가장 높은 활성을 보였다. 또한 Streptococcus agalactiae, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Candida albicans, Staphylococcus epidermidis 및 Salmonella typimimum에 대한 항균활성을 평가한 결과 참외의 에탄올 추출물에서 Streptococcus agalactia에서만 껍질, 과육, 태좌에서 각각 15, 13 및 12mm의 clear zone를 나타내었다.

Keywords

References

  1. Albertazzi, P. and Steel, S. A. (2002) Clifford E & Bottazzi M. Attitudes towards and use of dietary supplementation in a sample of postmenopausal women. Climacteric 5, 374-382 https://doi.org/10.1080/713605304
  2. Kedziora, J. and Bortosz, G. (1988) Down's syndrome: a pathway involving the lack of balance of reactive oxygen species. Free Radic. Biol. Med. 4, 317-330 https://doi.org/10.1016/0891-5849(88)90052-4
  3. Cross, E. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L. and McCord, J. M. (1987) Oxygen radicals and human disease. Ann. Intren. Med. 107, 536-545
  4. Sozmen, E. Y., Tanyakin, T., Onat, T., Kufay, F. and Erlacin, S. (1994) Ethanol-induced oxidative stress and membrane injury in rat erythrocytes. European J. Clinical Chem. Clinical Biochem. 32, 741-744
  5. Kang, I. H., Cha, J. H., Han, J. H., Lee, S. W., Kim, H. J., Kwon, S. H., Ham, I. H., Hwang, B. S. and Whang, W. K. (2005) Isolation of antioxidant from domestic Crataegus pinnatifida Bunge leaves. Korean J. Pharmacogn. 36, 121-128
  6. Choe, S. Y. and Yang, K. H. (1982) Toxicological studies of antioxidants, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Korean J. Hood Sci. Technol. 12, 283-288
  7. Cho, Y. J., Ju, I. S., Kwon, O. J., Chun, S. S., An, B. J. and Kim, J. H. (2008) Biological and antimicrobial activity of Portulaca oleracea. J. Korean Soc. Appl. Biol. Chem. 51, 49-54
  8. Shin, Y. S., Park, S. D., Do, H. W., Bae, S. G., Kim, J. H. and Kim, B. S. (2005) Effect of double layer nonwoven fabrics on the growth, quality and yield of oriental melon (Cucumis melo L. var. makuwa Mak.) under vinylhouse. J. Bio-Env. Con. 14, 22-28
  9. Ronsivalli, L. J. and Vieira, E. R. (1992) Elementary food science. pp. 338-344. AVI Book, New York
  10. Lee, G. H., Kim, S. K. and Lee, M. H. (2004) Monitoring of organoleptic and physical properties on preparation of oriental melon jelly. J. Korean Soc. Food Sci. Nutr. 33, 1373-1380 https://doi.org/10.3746/jkfn.2004.33.8.1373
  11. Lee, G. H., Kim, S. K. and Lee, M. H. (2005) Quality change of beverage containing muskmelon vinegar and concentrated muskmelon juice during storage. Kor. J. Food Preserv. 12, 223-229
  12. Lee, H. J. and Kim, J. G. (2000) The changes of components and texture out of carrot and radish pickles during the storage. Kor. J. Food Nutr. 13, 563-569
  13. Choi, Y. J., Chun, H., Choi, Y. H., Yum, S. H., Lee, S. Y., Kim, H. J., Shin, Y. S. and Chung, D. S. (2007) Nutritional components content of oriental melon fruits cultivated under different greenhouse covering films. J. Bio-Env.. Con. 16, 72-77
  14. Rhee, K. S., Ziprin, Y. A. and Rhee, K. C. (1981) Antioxidant activity of methanolic extracts of various oilseed protein ingredient. Korean J. Food Sci. 46, 75-81
  15. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1202 https://doi.org/10.1038/1811199a0
  16. Pellegrin, N., Roberta, R., Min, Y. and Catherine, R. E. (1998) Screening of dietary carotenoids and carotenoid-rich fruit extract for antioxidant activites applying 2,2-azinobis(3-ethylenbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299, 379-389
  17. Stirpe, F. and Corte, E. D. (1969) The regulation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3861
  18. Conner, D. E. and Beuchat, L. R. (1984) Sensitivity of heatstressed yeast to essential oils of plants. Appl. Environ. Microbiol. 47, 229-233
  19. Kuhnau, J. (1976) The flavonoids a class of semiessential food components; their role in human nutrition. World Rev. Nutr. diet. 24, 117-120
  20. Kang, Y. H., Park, Y. K. and Lee, G. D. (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol. 28, 232-239
  21. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. and Okuda, T. (1989) Phenolic constituents of Licorce. II. structures of Licopyranocoumarin, Licoaryl- coumarin and Glisoflavone, and inhibitory effects of Licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37, 3005-3009 https://doi.org/10.1248/cpb.37.3005
  22. Jones, P. H. (1973) Iodinine as an antihypertensive agent. Chem. Pharm. Bull.. 3, 679
  23. Kelley, W. N. and J. B. (1974) Wyngarden: Enzymology of gout. Adv. Enzymol. 41, 23-28
  24. Storch, H. and Ferber, E. (1988) Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal. Biochem. 169, 262-267 https://doi.org/10.1016/0003-2697(88)90283-7
  25. Cho, Y. C., An, B. J. and Choi, C. (1993) Isolation and enzyme inhibition of tannins from korean green tea. Korean Biochem. J. 26, 216-223
  26. An, B. J., Lee, J. T. and Bae, M. J. (1998) Isolation of a novel polyphenol from oolong tea and its effective prevention of the gout. Korean J. Food Sci. Technol. 30, 970-975
  27. Gua, J., Jin, Y. S., Han, W., Shim, T. H., Sa, J. H. and Wang, M. H. (2006) Studies for component analysis, antioxidantive activity and $\alpha$-Glucosidase inhibitory activity from Equisetum arvense. J. Kor. Soc. Appl. Biol. Chem. 49, 77-81