Dextran Sodium Sulfate로 대장염을 유도한 흰쥐에서 캐피어 원말의 장보호 효과

Protective Effect of Kefir Grain Against Dextran Sodium Sulfate-Induced Colitis in Rats

  • 고영은 (충남대학교 생활과학대학 식품영양학과) ;
  • 김미경 ((주)더멋진바이오텍) ;
  • 조한영 ((주)더멋진바이오텍) ;
  • 이인영 ((주)더멋진바이오텍) ;
  • 이선영 (충남대학교 생활과학대학 식품영양학과)
  • Ko, Young-Eun (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Mi-Kyoung (DMJ Biotechnology Research Institute, DMJ Biotech Corp.) ;
  • Cho, Han-Young (DMJ Biotechnology Research Institute, DMJ Biotech Corp.) ;
  • Lee, In-Young (DMJ Biotechnology Research Institute, DMJ Biotech Corp.) ;
  • Ly, Sun-Yung (Department of Food and Nutrition, Chungnam National University)
  • 발행 : 2008.07.30

초록

캐피어 원말은 유산균, 효모, 다당 및 여러 영양성분을 다량 함유하고 있으며 장기능 개선 효능을 살펴보기 위하여 3주령의 수컷 흰쥐 (Sprague-Dawley)를 4군으로 나누어 정상대조군 (N군), DSS투여 대조군 (DC군)과 두 군의 캐피어 투여군으로 하여 대조군 사료와 캐피어 원말을 각각 1.5%와 3.0% 혼합한 사료로 3주간 사육하였다. 이 후 DSS투여 대조군과 캐피어 투여군들에 5일간 2% DSS 음용수 동일한 양을 투여하여 경미한 대장염을 유도하였다. 대장염 유도 후 희생하여 소장 단백질 및 DNA 함량, 혈장 및 결장의 조직검사와 결장조직에서 TBARS와 MPO 활성, 혈장 백혈구에서의 DNA 손상 정도를 측정하였다. 실험 자료는 Windows용 SPSS package program version12.0을 이용하여 통계 처리하였고, 네 군간의 평균값의 차이를 검증하기 위하여 일원배치 분산분석 (one-way ANOVA)을 한 후, Duncan's multiple range test로 변인간의 차이를 검증하였다. DSS 투여군 들에서 변 수분함량이 증가하고 음용수 섭취량이 증가하는 경향과 함께 결장의 조직검사 결과 DSS 투여군에서는 염증과 부종 증상을 관찰할 수 있었으며 식이무게의 3% 캐피어 원말 투여군에서는 재생성 변화를 볼 수 있었다. DSS를 투여받은 군들의 소장 점막 단백질 함량은 감소하는 경향을 보였으며 캐피어 3.0%식이섭취한 군들에서는 증가하는 경향을 보였으나 DNA함량에서는 차이를 볼 수 없었다. DSS 투여군에서는 결장조직의 TBARS 값이 유의적으로 증가하였으며 캐피어 투여군에서는 감소하였으나 캐피어 투여 용량에 따른 차이는 보이지 않았다. 혈장 TBARS와 결장조직의 MPO 활성은군 간에 유의한 차이가 없었다. DSS 투여군에서는 혈액 백혈구 DNA의 tail length가 유의하게 증가하였으며 캐피어 투여군에서는 감소하였다. 따라서 약 4주간 캐피어 원말의 투여는 2%의 DSS로 경미한 대장염을 유도한 흰쥐에서 결장 조직의 산화적 스트레스에 대한 저항력을 증가시켜 대장점막을 보호할 수 있는 기능이 있음을 확인할 수 있었다.

Probiotics have emerged as a potential treatment modality for numerous gastrointestinal disorders, including IBD. However, few probiotics have undergone appropriate preclinical screening in vivo. Kefir is considered a probiotic, benefiting the host through its effects in the intestinal tract. Despite numerous studies examining the action of probiotics on the host organism, few have analyzed the effects on intestinal environment. We assessed the protective effect of kefir for three weeks before inducing colitis with 2% dextran sodium sulfate for five days. The DSS loads were similar in all DSS treatment group. The results of the experiment are as follows. Food intake and FER of experimental groups were not significantly different each other, but water consumption tended to be higher in all DSS treatment groups as compared with the normal control. And visual inspection of feces revealed mild diarrhea in rat given 2% DSS. The anti-inflammatory activity of kefir was determined by myeloperoxidase activity during the DSS treatment, and there was no significant difference in any group. The levels of thiobarbituric acid reactive substances (TBARS) as a colonic lipid peroxidation were significantly lower in the kefir intake groups than in rats treated with 2% DSS alone. The DNA % in tail and tail moment values as a DNA damage level of the blood lymphocytes in kefir intake groups tended to be lower than 2% DSS treatment alone, especially tail lengths were significantly diminished. According to the colonic histopathological assay, there were a severe inflammation of lamina propria and submucosa and mild edema in mucosa and sub mucosa in DSS alone treated group. We found a slight regenerative change in kefir treatment groups. In our experiments, this means that ulcerative colitis related to oxidative injury might be prevented by kefir as a probiotic. Further studies of the potential benefits of kefir as a probiotic in inflammatory condition are encouraged.

키워드

참고문헌

  1. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182-205 https://doi.org/10.1016/S0016-5085(98)70381-6
  2. Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev 2002; 15(1): 79-94 https://doi.org/10.1128/CMR.15.1.79-94.2002
  3. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 1984; 87: 1344-1350
  4. Weitzma SA, Gordon LI. Inflammation and cancer: role of phagocyte- generated oxidants in carcinogenesis. Blood 1990; 76: 655- 663
  5. Stadnichi A, Cloman RW. Experimental models of inflammatory bowel disease. Arch Immunol Ther Exp 2003; 51(3): 149-155
  6. Grip O, Janciauskiene S, Lindgren S. Macrophages in inflammatory bowel disease. Curr Drug Targets Inflamm Allergy 2003; 2: 115-160
  7. Yoshida N, Yoshikawa T, Yamaguchi T, Naito Y, Tanigawa T, Murase H, Kondo M. A novel water-soluble vitamin E derivbative protects against experimental colitis in rats. Antioxid Redox Signal 1999; 1: 555-562 https://doi.org/10.1089/ars.1999.1.4-555
  8. Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 1994; 305: 253-264 https://doi.org/10.1016/0027-5107(94)90245-3
  9. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98(3): 694-702 https://doi.org/10.1016/0016-5085(90)90290-H
  10. Ohkusa T. Production of experimental ulcerative colitis in hamster by dextran sulfate sodium and changes in intestinal microflora. Jpn J Gastroenterol 1985; 82: 1327
  11. Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994; 107(6): 1643 https://doi.org/10.1016/0016-5085(94)90803-6
  12. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1983; 96(3): 795- 803
  13. Kimura I, Nagahama S, Kawasaki M, Kataoka M, Sato M. Study on the experimental ulcerative colitis model induced by dextran sulfate sodium in rat. Nippon Yakurigaku Zasshi 1996; 108(5): 259-266 https://doi.org/10.1254/fpj.108.259
  14. Kuhn R, Lohler J, Rennikc D, Rajewsky K, Muller W. Interleukin- 10-deficient-mice develop chronic enterocolitis. Cell 1993; 75: 263-274 https://doi.org/10.1016/0092-8674(93)80068-P
  15. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993; 75: 274- 282
  16. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel diesease. Gastroenterology 1995; 109: 1344 https://doi.org/10.1016/0016-5085(95)90599-5
  17. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein BE, Buchler MW. Characterisation of acute murine dextran sodium sulfate colitis: cytokine proile and does dependency. Digestion 2000; 62: 240-248 https://doi.org/10.1159/000007822
  18. Kitajima S, Takoma S, Morimoto M. Changes in colonic mucosal permeability mouse colitis induced with dextran sulfate sodium. Exp. Animal 1999; 48: 137-143 https://doi.org/10.1538/expanim.48.137
  19. Msiewicz JJ, Lennard-hones JE, Connell AM. controlled trial of sulfasalazine in maintenance therapy for ulcerative colitis. Lancet 1965; 1: 185-188 https://doi.org/10.1016/S0140-6736(02)95624-2
  20. Boumpas DT, Chrousos GP, Wilder RL. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 1993; 119: 1198-1208 https://doi.org/10.7326/0003-4819-119-12-199312150-00007
  21. Guarner F, Schaafsma GJ. Short communication Probiotics. Int. Jour of Food Microbiol 1998; 39: 237-238 https://doi.org/10.1016/S0168-1605(97)00136-0
  22. Kandler O, Kunath P. Lactobacillus kefir sp., component of microflora of kefir. Syst. Appl Microbiol 1983; 4: 286-294 https://doi.org/10.1016/S0723-2020(83)80057-5
  23. Dong Shin Kim, Sang Kyo Park, Kwak Hae Soo, Kil Wang Lee. Isolation, Identification and Characterization of Lactose Nonfermenting Yeast from Kefir Cultures. Korean J food Sci Resour 1994; 14(2): 175-178
  24. Garrote GL, Abraham AG, De Antoin GL. Inhibitory power of kefir: the role of organic acids. J. Food Prot 2000; 63: 364-369 https://doi.org/10.4315/0362-028X-63.3.364
  25. Shiomi MK, Sasaki M, Murofushi K. Aibara. Antirumor activity in mice of orally administered polysaccharide from kefir grain. Jap J Medical Science and Biology 1982; 35: 75-80 https://doi.org/10.7883/yoken1952.35.75
  26. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN- 76A rodent diet. J Nutr 1993; 123(11): 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  27. Bradley PR, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: Estimation of Neutrophil content with an enzyme marker. J Invest Dermatol 1982; 78(3): 206-209 https://doi.org/10.1111/1523-1747.ep12506462
  28. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 1976; 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  30. Giles KW, Myers A. An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 1965; 206: 93
  31. Burton KA. Study of conditious and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 1965; 62: 315
  32. Park SY, Seo DY, Suh KS, Ly SY. Oxidative stress of mouse fed with ɣ-Irradiated soybean diet. Korean J Nutr 2007; 40(2): 138- 146
  33. Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, Vitali B, Poggioli G, Miglioli M, Campieri M. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 2003; 124: 1202-1209 https://doi.org/10.1016/S0016-5085(03)00171-9
  34. Venturi A, Gionchetti P, Rizzello F, Johansson R, Zucconi E, Brigidi P, Matteuzzi D, Campieri M. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Alimentary Pharmacology and Therapeutics 1999; 13: 1103-1108 https://doi.org/10.1046/j.1365-2036.1999.00560.x
  35. Ichikawa H, Huroiwa T, Inagaki A, Shineha R, Nishihira T, Satomi S, Sakata T. Probiotic bacteria stimulate gut epithelial cell proliferation in rat. Digestive Disease and Sciences 1999; 44: 2119-2123 https://doi.org/10.1023/A:1026647024077
  36. Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. Journal of Biological Chemistry 2002; 277: 50959-50965 https://doi.org/10.1074/jbc.M207050200
  37. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, Grenther WB, Sartor RB. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut 2003; 52: 370-6 https://doi.org/10.1136/gut.52.3.370
  38. Fuller R, Gibson GR. Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol 1977; 222: 28-31
  39. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361: 512-519 https://doi.org/10.1016/S0140-6736(03)12489-0
  40. Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc 2001; 101(2): 229-238 https://doi.org/10.1016/S0002-8223(01)00060-8
  41. Furrie E. Probiotics and allergy. 2005; 64(4): 465-469
  42. Bibiloni R, Fedorak RN, Tannock GW, Madsen, KL, Gionchetti P, Campieri M, De Simone C, Sartor RB. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. American Journal of Gastroenterology 2005; 100: 1539-1546 https://doi.org/10.1111/j.1572-0241.2005.41794.x
  43. Fujiwara M, Kaneko T, Iwana H, Taketomo N, Tsunoo H, Kanno J, Ohkusa T, Okayasu I. Inhibitory effects of Bifidobacterium longum on experimental ulceratice colitis induced in mice by synthetic dextran sulfate sodium. Digestion 2003; 67: 90-95 https://doi.org/10.1159/000069704
  44. Setoyama H, Imakka A, Ishikawa H, Umesaki Y. Prevention of gut inflammation by bifidobacterium in dextran sulfate treated gnotobiotic mice associated with bacteroids strains iisolated from ulcerative colitis patients. Microbes and Infection 2003; 5: 115- 122 https://doi.org/10.1016/S1286-4579(02)00080-1
  45. Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Digestive Diseases and Sciences 2004; 49: 320-327 https://doi.org/10.1023/B:DDAS.0000017459.59088.43
  46. Doron S, Gorbach SL. Probiotics: their role in the treatment and prevention of disease. Expert Rev Anti Infect Ther 2006; 4(2): 261-275 https://doi.org/10.1586/14787210.4.2.261
  47. Oz HS, McClain CJ, Nagasawa H, Mukunda R, Chen TS. Antioxidants as novel therapy in a murine model of colitis. Journal of Nutritional biochemistry 2005; 16: 297-304 https://doi.org/10.1016/j.jnutbio.2004.09.007
  48. Fabia R, Willen R, Ar'Rajab A, Andersson R, Ahren B, Bengmark S. Acetic acid-induced colitis in the rat: a reproducible experimental model for acute ulcerative colitis. Eur Surg Res 1992; 24: 211-225 https://doi.org/10.1159/000129209
  49. Mao Y, Nobaek S, Kasravi B, Adawi D, Stenram U, Morin G, Jeppsson B. The effects of Lactoba-cillus strains and Oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 1996; 111(2): 334-344 https://doi.org/10.1053/gast.1996.v111.pm8690198
  50. Souza MM, Aguilar-Nascimento JE, Gomes-da-Silva MH, Carlos Junior R. Effects of budesonide and probiotics enemas on the colonic mucosa of rats with experimental colitis. Acta Cir Bras 2007; 22(1): 34-38
  51. Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Digestive Diseases and Sciences 1988; 33: 6S-15S https://doi.org/10.1007/BF01538126
  52. Lu J, Wang A, Ansari S, Hershberg RM, McKay DM. Colonic bacterial superantigens evoke an inflammatory response and exaggerate disease in mice recovering from colitis. Gastroenterology 2003; 125(6): 1785-1795 https://doi.org/10.1053/j.gastro.2003.09.020
  53. Togawa J, Nagase H, Tanaka K, Inamori M, Nakajima A, Ueno N, Saito T, Sekihara H. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Journal of Gastroenterology and Hepatology 2002; 17(13): 1291-1298 https://doi.org/10.1046/j.1440-1746.2002.02868.x
  54. Kurutas EB, Cetinkaya A, Bulbuloglu E, Kantarceken B. Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Znsuperoxide dismutase and plasma malondialdehyde levels in experimental colitis. Mediators of inlfammation 2005; 6: 390-394
  55. Williams JG, Hughes LE, Hallett MB. Toxic oxygen metabolite production by circulating phagocytic cells in inflammatory bowel disease. Gut 1990; 31(2): 187-193 https://doi.org/10.1136/gut.31.2.187
  56. Naito Y, Takagi T, Ishikawa T, Handa O, Matsumoto N, Yagi N, Matsuyama K, Yoshida N, Yoshikawa T. The inducible nitric oxide synthase inhibitor ONO-1714 blunts dextran sulfate sodium colitis in mice. European Journal of pharmacology 2001; 412: 91-99 https://doi.org/10.1016/S0014-2999(00)00926-2
  57. Liu LN, Mei QB, Liu L, Zhang F, Liu ZG, Wang ZP, Wang RT. Protective effcts of Rheum tanguticum polysaccharide against hydrogen peroxide-induced intestinal epithelial cell injury. World J Gastroenterol 2005; 11(10): 1503-1507 https://doi.org/10.3748/wjg.v11.i10.1503
  58. Mahgoub AA, El-Medany AA, Hager HH, Mustafa AA, El- Sabah DM. Evaluating the prophylactic potential of zafirlukast against the toxic effects of acetic acid on the rat colon. Toxicol Lett 2003; 145(1): 79-87 https://doi.org/10.1016/S0378-4274(03)00269-8
  59. Mabley JG, Pacher P, Liaudet L, Soriano FG, Hasko G, Marton A, Szabo C, Salzman AL. Inosine reduces inflammation and improves survival in a murine model of colitis. Am J physiol Gastrointest Liver Physiol 2003; 284(1):138-144 https://doi.org/10.1152/ajpgi.00060.2002
  60. Cuzzocrea S, Mazzon E, Serraino I, eV, nova ML, oA, Caputi. Melatonin reduces dinitrobenzene sulfonic acid-induced colitis. J Pineal Res 2001; 30(1): 1-12 https://doi.org/10.1034/j.1600-079X.2001.300101.x
  61. Embvani E, Tardieu D, Jaeg JP, Corpet DE, Petit C. Dextran sulfate enhances the level of an oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, in rats colonic mucosa. Toxicology Letters 1998; 95(1): 190
  62. Stucchi AF, Shofer S, Leeman S, Materne O, Beer E, Mcclung J, Shebini K, Moore F, O'brien M, Becker JM. NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulfate- induced colitis in rats. Am J Physiol 2000; 279: 1298-1306
  63. Girgin F, Karaoglu O, Erkus M, Tuzun S, Ozutemiz O, Dincer C, Batur Y, Tanyalcin T. Effects of trimetazidine on oxidant/antioxidant status in trinitrobenzenesulfonic acid-induced chronic colitis. J Toxicol Environ Health A 2000; 59(8): 641-652 https://doi.org/10.1080/009841000156637
  64. Girgin F, Karaoglu O, Tuzun S, Erkus M, Ozutemiz O, Dincer C, Batur Y, Tanyalcin T. Effects of trimetazindine in ethanol and acetic acid induced colitis: oxidant/anti-oxidant status. Colorectal Disease 1999; 1: 338-346 https://doi.org/10.1046/j.1463-1318.1999.00078.x
  65. Guven A, Gulemez M. The effect of kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachlorideinduced mice tissues. J Vet Med 2003; 50: 412-416 https://doi.org/10.1046/j.1439-0450.2003.00693.x
  66. Tsutomu N, Junko N, Kiichirou T, Yoshinori K, Sun-yup S, Kenichi K, Sennosuke T, Koichiro T, David WB, Sanetaka S. Suppression of UVC-induced cell damage and enhancement of DNA repair by the fermented milk, Kefir. Cytotechnology 2002; 40: 125-137 https://doi.org/10.1023/A:1023984304610
  67. Peran L, Camuesco D, Comalada M, Nieto A, Concha A, Adrio JL, Olivares M, Xaus J, Zarzuelo A, Galvez J. Lactobacillus fermentum, a probiotic capable to release glutathione, prevents colonic inflammation in the TNBS model of rat colitis. International Journal of Colorectal Disease 2006; 21: 737-746 https://doi.org/10.1007/s00384-005-0773-y