Antioxidant Phenolic Components from the Whole Plant Extract of Cyperus amuricus Max.

방동사니 전초의 항산화 페놀성 성분

  • Published : 2008.09.30

Abstract

In order to find the antioxidative components, fractionation of Cyperus amuricus (Cyperaceae) methanol extract was performed by measuring the DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging effect. Three compounds, 3,4-dimethoxy benzoic acid (1), 4-hydroxybenzoic acid (2), and piceatannol (3) were isolated from the active ethylacetate soluble fraction of C. amuricus through repeated silica gel and Sephadex LH-20 column chromatography. Among them, compound 3 showed the significant antioxidative effect on DPPH free radical scavenging test. These compounds are reported for the first time from this plant.

Keywords

References

  1. Ma, Y. Q., Ye, X. Q., Fang, Z. X., Chen, J. C., Xu, G. H. and Liu, D. H. (2008) Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma Mandarin (Citrus unshiu Marc.) peels. J. Agric. Food Chem. 56(14): 5682-5690 https://doi.org/10.1021/jf072474o
  2. Dembinska-Kiec, A., Mykknen, O., Kiec-Wilk, B. and Mykknen, H. (2008) Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 99 E Suppl 1: ES 109-117
  3. Li, D. L., Li, X. M., Peng, Z. Y. and Wang, B. G. (2007) Flavanol derivatives from Rhizophora stylosa and their DPPH radical scavenging activity. Molecules, 12(5): 1163-1169 https://doi.org/10.3390/12051163
  4. Branen, A. L. (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil. Chem. Soc., 52: 59-63 (1975) https://doi.org/10.1007/BF02901825
  5. 이창복 (1986) 대한식물도감, 178, 향문사, 서울
  6. 이우철 (1996) 원색한국기준식물도감, 468, 아카데미서적, 서울
  7. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V. Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921 https://doi.org/10.1248/cpb.37.1919
  8. Katherine, N. S. (1972) Carbon-13 nuclear magnetic resonance of biologically important aromatic acids. I. Chemical shifts of benzoic acid and derivatives. J. Am. Chem. Soc. 94: 8564-8568 https://doi.org/10.1021/ja00779a045
  9. Yazaki, K., Fukui, H. and Tabata, M. (1986) Accumulation of p-$\bigcirc-\beta$,D-glucosylbenzoic acid and its relation to shikonin biosynthesis in Lithospermum cell cultures. Phytochemistry, 25: 1629-1632 https://doi.org/10.1016/S0031-9422(00)81223-6
  10. Kobyashi, K., Ishihara, T., Khono, E., Miyase, T. and Yoshizaki, F. (2006) Constituents of stem bark of Callistemon rigidus showing inhibitory effects on mouse $\alpha$-amylase activity. Biol. Pharm. Bull. 29: 1275-1277 https://doi.org/10.1248/bpb.29.1275
  11. Kim, H. J., Lee, K. W., Kim, M.-S. and Lee, H. J. (2008) Piceatannol attenuates hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells by blocking down-regulation of Bcl-XL and activation of JNK. J. Nutr. Biochem. 19: 459-466 https://doi.org/10.1016/j.jnutbio.2007.06.001
  12. Cicinnati, V. R., Kang, J., Klein, C. G. Broelsch, C. E. Gerken, G. and Beckebaum, S. (2007) Effect of stat3 inhibitor piceatannol on human dendritic cell homeostasis and growth of hepatocellular carcinoma in vitro. J. Hepatol. 46: Supplement 1, S137
  13. Chang, J.-K., Hsu, Y.-L., Teng, I-C. and Kuo, P.-L. (2006) Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Eur. J. Pharmacol. 551: 1-9 https://doi.org/10.1016/j.ejphar.2006.08.073
  14. Jin, C.-Y., Moon, D.-O., Lee, K.-J., Kim, M.-O., Lee, J.-D., Choi, Y. H., Park, Y.-M. and Kim, G.-Y. (2006) Piceatannol attenuates lipopolysaccharide-induced NF-$\kappa$B activation and NF-$\kappa$B-related proinflammatory mediators in BV2 microglia. Pharmacol. Res. 54: 461-467 https://doi.org/10.1016/j.phrs.2006.09.005
  15. Seow, C.-J., Chue, S.-C. and Fred Wong, W. S. (2002) Piceatannol, a Syk-selective tyrosine kinase inhibitor, attenuated antigen challenge of guinea pig airways in vitro. Eur. J. Pharmacol. 443: 189-196 https://doi.org/10.1016/S0014-2999(02)01534-0