Diagnosis of Malignant Pleural Effusion by using Aberrant Methylation of p16 and RARB2

p16과 RARB2 유전자의 비정상적인 메틸화 검사를 이용한 악성 흉수의 진단

  • Rha, Seo Hee (Department of Pathology, Dong-A University College of Medicine) ;
  • Lee, Su Mi (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Koo, Tae Hyoung (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Shin,, Bong Chul (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Huh, Jung Hun (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Um, Soo Jung (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Yang, Doo Kyung (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Lee, Soo-Keol (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Son, Choonhee (Department of Internal Medicine, Dong-A University College of Medicine) ;
  • Roh, Mee Sook (Department of Pathology, Dong-A University College of Medicine) ;
  • Bae, Ho-Jeong (Department of Pathology, Dong-A University College of Medicine) ;
  • Kim, Ki Nam (Department of Radiology, Dong-A University College of Medicine) ;
  • Lee, Ki Nam (Department of Radiology, Dong-A University College of Medicine) ;
  • Choi, Pil Jo (Department of Thoracic and Cardiovascular Surgery, Dong-A University College of Medicine)
  • 나서희 (동아대학교 의과대학 해부병리과) ;
  • 이수미 (동아대학교 의과대학 호흡기내과) ;
  • 구태형 (동아대학교 의과대학 호흡기내과) ;
  • 신봉철 (동아대학교 의과대학 호흡기내과) ;
  • 허정훈 (동아대학교 의과대학 호흡기내과) ;
  • 엄수정 (동아대학교 의과대학 호흡기내과) ;
  • 양두경 (동아대학교 의과대학 호흡기내과) ;
  • 이수걸 (동아대학교 의과대학 호흡기내과) ;
  • 손춘희 (동아대학교 의과대학 호흡기내과) ;
  • 노미숙 (동아대학교 의과대학 해부병리과) ;
  • 배호정 (동아대학교 의과대학 해부병리과) ;
  • 김기남 (동아대학교 의과대학 영상의학과) ;
  • 이기남 (동아대학교 의과대학 영상의학과) ;
  • 최필조 (동아대학교 의과대학 흉부외과)
  • Received : 2008.02.14
  • Accepted : 2008.03.28
  • Published : 2008.04.30

Abstract

Background: A diagnosis of malignant pleural effusion is clinically important, as the prognosis of lung cancer patients with malignant pleural effusion is poor. The diagnosis will be difficult if a cytological test is negative. This study was performed to investigate whether the detection of hypermethylation of the p16 (CDKN2A) and retinoic acid receptor b2 (RARB2) genes in pleural fluid is useful for a diagnosis of malignant pleural effusion. Methods: Pleural effusion was collected from 43 patients and was investigated for the aberrant promoter methylation of the RARB2 and CDKN2A genes by use of methylation-specific PCR. Results were compared with findings from a pleural biopsy and from pleural fluid cytology. Results: Of 43 cases, 17 cases of pleural effusion were due to benign diseases, and 26 cases were from lung cancer patients with malignant pleural effusion. Hypermethylation of the RARB2 and CDKN2A genes was not detected in the case of benign diseases, independent of whether or not the patients had ever smoked. In 26 cases of malignant pleural effusion, hypermethylation of RARB2, CDKN2A or either of these genes was detected in 14, 5 and 15 cases, respectively. The sensitivities of a pleural biopsy, pleural fluid cytology, hypermethylation of RARB2, hypermethylation of CDKN2A, or hypermethylation of either of the genes were 73.1%, 53.8%, 53.8%, 19.2%, and 57.7%, respectively; negative predictive values were 70.8%, 58.6%, 58.6%, 44.7%, and 60.7%, respectively. If both genes are considered together, the sensitivity and negative predictive value was lower than that for a pleural biopsy, but higher than that for pleural fluid cytology. The sensitivity of hypermethylation of the RARB2 gene for malignant pleural effusion was lower in small cell lung cancers than in non-small cell lung cancers. Conclusion: These results demonstrate that detection of hypermethylation of the RARB2 and CDKN2A genes showed a high specificity, and sensitivity was higher than for pleural fluid cytology. With a better understanding of the pathogenesis of lung cancer according to histological types at the molecular level, and if appropriate genes are selected for hypermethylation testing, more precise results may be obtained.

연구배경: 악성 흉수가 있는 환자는 예후가 좋지 않아 이를 감별하는 것은 임상적으로 중요한 일이다. 하지만 흉수 내 세포진 검사가 음성일 경우 진단이 쉽지 않다. 따라서 본 연구는 흉수 탈락 세포에서 추출한 DNA에서 종양억제 유전자로 알려진 retinoic acid receptor b2 (RARB2)와 p16 유전자의 과메틸화 측정이 악성 흉수 진단에 도움이 될 수 있을지를 확인하기 위하여 실시하였다. 방법: 43명의 환자에서 흉수를 천자하여 흉수 내 탈락 세포에서 메틸화 특이 PCR 방법으로 RARB2와 p16 유전자의 과메틸화를 측정하고, 이를 흉막 생검 및 흉수 세포진 검사법과 비교하였다. 결과: 43명의 환자 중 17명은 폐렴, 결핵에 의한 양성 흉수 환자였고, 26명은 흉막 침범 폐암 환자였다. 17명의 양성 흉수에서는 흡연 유무와 상관없이 RARB2와 p16 유전자의 과메틸화가 관찰되지 않았다. 26명의 악성 흉수에서 과메틸화는 각각 14명, 5명에서 관찰되었으며, 두 유전자 중 어느 한 쪽이라도 과메틸화가 생긴 경우는 15명이었다. 흉막 생검, 흉수 내 세포진 검사, RARB2 단독, p16 단독, 두 유전자 동시 측정 과메틸화 검사의 민감도는 각각 73.1%, 53.8%, 53.8%, 19.2%, 57.7%이었고, 음성 예측도는 각각 70.8%, 58.6%, 58.6%, 44.7%, 60.7%로서 두 유전자를 동시에 검사할 때의 민감도와 음성 예측도는 흉막 생검보다는 낮았지만, 흉수 내 세포진 검사보다는 높았다. 또, 소세포암에서 p16를 이용한 민감도가 14.3%로 떨어져서 조직 유형에 따른 차이를 보였다. 결론: 본 연구 결과에서 p16과 RARB2 유전자의 과메틸화의 발견은 악성 흉수를 양성과 감별하는데 높은 특이도를 보였고, 민감도 역시 흉수 내 세포진 검사보다 높은 방법이었다. 폐암의 세포 유형에 따른 분자 생물학적 병리를 이해하고 적절한 유전자를 선정한다면 이런 결과는 더욱 향상될 수 있을 것으로 생각된다.

Keywords

References

  1. Korea National Statistical Office. Annual report on the cause of death statistics, 2005. Daejeon, Korea: Korea National Statistical Office; 2005. available from: http://www.cancer.go.kr/nciapps/user/basicinfo/ gcancer_main.jsp
  2. Light RW. Clinical practice. Pleural effusion. N Engl J Med 2002;346:1971-7 https://doi.org/10.1056/NEJMcp010731
  3. Poe RH, Israel RH, Utell MJ, Hall WJ, Greenblatt DW, Kallay MC. Sensitivity, specificity, and predictive values of closed pleural biopsy. Arch Intern Med 1984;144: 325-8 https://doi.org/10.1001/archinte.144.2.325
  4. Digel W, Lubbert M. DNA methylation disturbances as novel therapeutic target in lung cancer: preclinical and clinical results. Crit Rev Oncol Hematol 2005;55:1-11 https://doi.org/10.1016/j.critrevonc.2005.02.002
  5. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, et al. Aberrant methylation of P$16^{INK4a}$ is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 1998;95:11891-6 https://doi.org/10.1073/pnas.95.20.11891
  6. Houle B, Rochette-Egly C, Bradley WE. Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A 1993;90:985-9 https://doi.org/10.1073/pnas.90.3.985
  7. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996;93:9821-6 https://doi.org/10.1073/pnas.93.18.9821
  8. Schmiemann V, Bocking A, Kazimirek M, Onofre AS, Gabbert HE, Kappes R, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clin Cancer Res 2005;11:7728-34 https://doi.org/10.1158/1078-0432.CCR-05-0999
  9. Kim YC, Kwon YS, Oh IJ, Kim KS, Kim SY, Ryu JS, et al. National survey of lung cancer in Korea, 2005. J Lung Cancer 2007;6:67-73 https://doi.org/10.6058/jlc.2007.6.2.67
  10. Postmus PE, Brambilla E, Chansky K, Crowley J, Goldstraw P, Patz EF Jr, et al. The IASLC lung cancer staging project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol 2007;2: 686-93 https://doi.org/10.1097/JTO.0b013e31811f4703
  11. Gilliland FD, Harms HJ, Crowell RE, Li Y-F, Willink R, Belinsky SA. Glutathione s-transferase P1 and NADPH quinone oxidoreductase polymorphisms are associated with aberrant promoter methylation of $P16^{INK4a}$ and $O^6$-methylguanine-DNA methyltransferase in sputum. Cancer Res 2002;62:2248-52
  12. Fraipont F, Moro-Sibilot D, Michelland S, Brambilla E, Brambilla C, Favrot MC. Promoter methylation of genes in bronchial lavages: a marker for early diagnosis of primary and relapsing non-small cell lung cancer? Lung Cancer 2005;50:199-209 https://doi.org/10.1016/j.lungcan.2005.05.019
  13. Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E, Edelson MI, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004;64:6476-81 https://doi.org/10.1158/0008-5472.CAN-04-1529
  14. Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, et al. Retinoic acid receptor beta mediates the growth inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol 1996;16:1138-49 https://doi.org/10.1128/MCB.16.3.1138
  15. Cote S, Sinnett D, Momparler RL. Demethylation by 5-aza-2'-deoxycytidine of specific 5-methylcytosine sites in the promoter region of the retinoic acid receptor beta gene in human colon carcinoma cells. Anticancer Drugs 1998;9:743-50 https://doi.org/10.1097/00001813-199810000-00001
  16. Katayama H, Hiraki A, Aoe K, Fujiwara K, Matsuo K, Maeda T, et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer 2007;120:2191-5 https://doi.org/10.1002/ijc.22576
  17. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ. Absence of p16INK4 protein is restricted to the subset of lung cancer cell lines that retains wildtype RB. Oncogene 1994;9:3375-8
  18. Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001;1:61-7
  19. Grote HJ, Schmiemann V, Geddert H, Rohr UP, Kappes R, Gabbert HE, et al. Aberrant promoter methylation of $p16^{INK4a}$, RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. Int J Cancer 2005;116:720-5 https://doi.org/10.1002/ijc.21090