Detection of Clarithromycin-resistant Strains from Clinical Isolates of Mycobacterium abscessus

Clarithromycin 약제에 대한 Mycobacterium abscessus 임상 내성 균주 분리

  • 이승헌 (대한결핵협회 결핵연구원) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 류성원 (대한결핵협회 결핵연구원) ;
  • 심명섭 (대한결핵협회 결핵연구원) ;
  • 류우진 (대한결핵협회 결핵연구원) ;
  • 김희진 (대한결핵협회 결핵연구원)
  • Received : 2008.06.03
  • Accepted : 2008.06.10
  • Published : 2008.06.30

Abstract

Background: Mycobacterium abscessus is the most pathogenic and drug-resistant rapid-growing mycobacterium. Clarithromycin or azithromycin are the only regular oral antimycobacterial agents that have an effect on M. abscessus. We tried to detect the clarithromycin-resistant strains from the clinical isolates of M. abscessus. Methods: We tried to isolate the clarithromycin-resistant strains from 220 clinical isolates of M. abscessus by performing using reverse hybridization assay (RHA) and the broth microdilution test (BMT). Results: Seven resistant strains (3.2%) from all the tested clinical isolates were detected by BMT. Three of these resistant strains were also detected by RHA and it was confirmed that they had point mutants. Conclusion: These results showed that clarithromycin resistance in M. abscessus clinical isolates is related to a point mutation and other unknown mechanisms.

연구배경: Mycobacterium abscessus는 빠른 성장성을 지닌 비결핵균중에서 높은 병원성과 약제 내성을 나타내는 종이며, clarithromycin과 azithromycin 항결핵제가 M. abscessus에 효과가 있는 유일한 경구용 항결핵제이다. 본 연구에서는 역교잡반응법과 약제감수성검사법을 이용하여 clarithromycin 약제에 대한 M. abscessus 임상 내성균주 검출을 시도하였다. 방 법: 역교잡반응법과 약제감수성검사법을 이용하여 220개의 M. abscessus 임상 균주를 대상으로 내성 균주를 분리하였다. 결 과: 약제감수성검사법으로 7개의 임상 내성 균주들을 검출하였고, 이들 중 3개의 내성 균주는 점 돌연변이 균주로서 역교잡반응법으로도 확인하였다. 결 론: M. abscess 균주에서는 점 돌연변이 및 다른 종류의 내성 특성을 나타내고 있음을 확인할 수 있었다.

Keywords

References

  1. Brown-Elliott BA, Griffith DE, Wallace RJ Jr. Newly described or emerging human species of nontuberculous mycobacteria. Infect Dis Clin North Am 2002;16:187-220 https://doi.org/10.1016/S0891-5520(03)00052-7
  2. Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 2002;15:716-46 https://doi.org/10.1128/CMR.15.4.716-746.2002
  3. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society was approved by the Board of Directors, March 1997. Medical Section of the American Lung Association. Am J Respir Crit Care Med 1997;156:S1-25 https://doi.org/10.1164/ajrccm.156.1.ed08-97
  4. Brown BA, Springer B, Steingrube VA, Wilson RW, Pfyffer GE, Garcia MJ, et al. Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 1999;49:1493-511 https://doi.org/10.1099/00207713-49-4-1493
  5. Buriankova K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, et al. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 2004;48:143-50 https://doi.org/10.1128/AAC.48.1.143-150.2004
  6. Nash KA. Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm (38). Antimicrob Agents Chemother 2003;47:3053-60 https://doi.org/10.1128/AAC.47.10.3053-3060.2003
  7. Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother 2005;55:170-7 https://doi.org/10.1093/jac/dkh523
  8. Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother 2006;50:3476-8 https://doi.org/10.1128/AAC.00402-06
  9. Meier A, Kirschner P, Springer B, Steingrube VA, Brown BA, Wallace RJ Jr, et al. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother 1994;38:381-4 https://doi.org/10.1128/AAC.38.2.381
  10. Nash KA, Inderlied CB. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother 1995;39:2625-30 https://doi.org/10.1128/AAC.39.12.2625
  11. Wallace RJ Jr, Meier A, Brown BA, Zhang Y, Sander P, Onyi GO, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996;40:1676-81
  12. Coleman K, Athalye M, Clancey A, Davison M, Payne DJ, Perry CR, et al. Bacterial resistance mechanisms as therapeutic targets. J Antimicrob Chemother 1994;33: 1091-116 https://doi.org/10.1093/jac/33.6.1091
  13. Fierro JF, Hardisson C, Salas JA. Involvement of cell impermeability in resistance to macrolides in some producer streptomycetes. J Antibiot (Tokyo) 1988;41:142-4 https://doi.org/10.7164/antibiotics.41.142
  14. Honore N, Roche PW, Grosset JH, Cole ST. A method for rapid detection of rifampicin-resistant isolates of Mycobacterium leprae. Lepr Rev 2001;72:441-8
  15. NCCLS. Susceptibility testing of Mycobacteria, Nocardia, and other aerobic actinomycetes: approves standard. Wayne, Pennsylvania: NCCLS; 2003
  16. Douthwaite S, Aagaard C. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23S rRNA peptidyl transferase loop. J Mol Biol 1993;232:725-31 https://doi.org/10.1006/jmbi.1993.1426
  17. Goldman RC, Kadam SK. Binding of novel macrolide structures to macrolides-lincosamides-streptogramin B-resistant ribosomes inhibits protein synthesis and bacterial growth. Antimicrob Agents Chemother 1989; 33:1058-66 https://doi.org/10.1128/AAC.33.7.1058
  18. Andersson S, Kurland CG. Elongating ribosomes in vivo are refractory to erythromycin. Biochimie 1987;69: 901-4 https://doi.org/10.1016/0300-9084(87)90218-5
  19. Menninger JR. Mechanism of inhibition of protein synthesis by macrolide and lincosamide antibiotics. J Basic Clin Physiol Pharmacol 1995;6:229-50
  20. Champney WS, Tober CL. Superiority of 11,12 carbonate macrolide antibiotics as inhibitors of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells. Curr Microbiol 1999;38:342-8 https://doi.org/10.1007/PL00006814