DOI QR코드

DOI QR Code

Interaction between Groundwater and Surface Water in Urban Area

도시지역의 지하수와 하천수의 교류량

  • 배상근 (계명대학교 공과대학 토목공학과) ;
  • 이승현 (계명대학교 공과대학 토목공학과)
  • Published : 2008.09.02

Abstract

Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.

도시지역의 하천수와 지하수의 교류를 평가하기 위하여 대구지역을 선정하였다. 연구대상지역에는 낙동강, 금호강 및 25개 하천이 총 유로길이 240 km로 유하하고 있다. 하천수와 지하수의 교류량의 산정은 Darcy식을 이용하였다. 연구대상지역을 16개 소유역으로 나누어서 계산하고 그 결과를 비교하였다. 교류량 산정에는 지하수위, 하천수위, 투수계수, 대수층 두께 및 하천과 가장 근접한 우물과의 거리를 적용하였다. 소유역별 지하수의 하천 유출량, 하천수의 지하수함양량 및 교류량을 산정하였다. 연구 대상지역에서 하천으로 유출하는 지하수량은 약 $72{\times}10^6m^3/year$이고 지하수를 함양하는 하천수량은 약 $35{\times}10^6m^3/year$이었다. 하천수와 지하수의 교류량은 약 $108{\times}10^6m^3/year$이고 하천수와 지하수의 교류량 수지는 약 $37{\times}10^6m^3/year$이었다. 하천수와 지하수의 교류량은 고령교 유역에서 약 $29{\times}10^6m^3/year$로 가장 많고 달창댐 유역에서 약 $0.2{\times}10^6m^3/year$로 가장 적게 발생하였다. 교류량 산정 결과 연구대상지역 에서는 하천수와 지하수의 교류가 대단히 활발하며 소유역간 차이가 큼을 알 수 있었다. 이들 결과로부터 도시지역의 지표수와 지하수의 교류량을 보다 정도 높게 파악하기 위한 연구가 필요한 것을 알 수 있었다.

Keywords

References

  1. 건설교통부 (2004). 전국하천일람
  2. 건설교통부, 한국수자원공사 (2004). 대구지하수기초조사 보고서
  3. 건설교통부, 한국수자원공사 (2006). 지하수 조사연보
  4. 기상청 (2006). 강우량관측자료 http://www.kma.go.kr
  5. 김수원, 배상근 (1996). "도시화에 의한 지하수 환경의 변화." 상하수도학회지, 상하수도학회, 제10권, 제1호, pp. 69-77
  6. 김윤종, 원종석, 이석민 (2000). "GIS를 이용한 서울시 지하수 오염분석 연구." The Journal of GIS Association of Korea, 제8권, 제2호, pp. 317-328
  7. 김형석, 박경선 (1998). "서울 일부지역 지하수 중 중금속함량에 관한 연구." 한국환경 분석학회지, 한국환경 분석학회, 제1권, 제2호, pp. 159-163
  8. 대구광역시 (2004). 대구광역시 통계연보
  9. 대구광역시 (2007). 대구광역시 통계자료실 http://www.daegu. go.kr
  10. 어수미, 오수경, 박성배 (1989). "서울지역 지하수의 오염도와 성분별 상관성 검토." 한국환경위생학회지, 한국환경위생학회, 제15권, 제1호, pp. 51-62
  11. 윤용남 (2007). 수문학, 청문각
  12. 최무웅 (1991). "도시환경과 지하수", 지하수. Vol.1, pp. 52-57
  13. 홍성훈, 한수영, 박남식 (2003). "해안지역의 지하수 개발가능량 평가", 대한토목학회논문집, 대한토목학회, 제23권, 제3B호, pp. 201-207
  14. Corbett, D.R., Burnett, W.C., and Chanton, J.P. (2000). "Submarine groundwater discharge, an unseen yet potentially important coastal phenomenon." SGEB-54
  15. Edmunds, W.M, Carrillo-Rivera, J.J., and Cardona, A. (2002). "Geochemical evolution of groundwater beneath Mexico City." Journal of Hydrology, Vol. 258, pp. 1-24 https://doi.org/10.1016/S0022-1694(01)00461-9
  16. Ellis, P.A., Mackay, R., and Rivett, M.O. (2007). "Quantifying urban river-aquifer fluid exchange processes: A multi-scale problem." Journal of Contaminant Hydrology, Vol. 91, pp. 58-80 https://doi.org/10.1016/j.jconhyd.2006.08.014
  17. Foster, S.S.D. and Chilton, P.J. (2004). "Downstream of downtown: urban wastewater as groundwater recharge." Hydrogeology Journal, Vol. 12, pp. 115-120 https://doi.org/10.1007/s10040-003-0296-y
  18. Navarro, A. and Carbonell, M. (2007). "Evaluation of groundwater contamination beneath an urban enviroment: The Besos river basin(Barcelona, Spain)." Journal of Environmental Management, Vol. 85, No. 2, pp. 259-269 https://doi.org/10.1016/j.jenvman.2006.08.021
  19. Nield, S.P., Townley, L.R., and Barr, A.D. (1994). "A framework for quantitative analysis of surface water-groundwater interaction: flow geometry in a vertical section." Water Resources Research, Vol. 30. pp. 2461-2474 https://doi.org/10.1029/94WR00796
  20. Schilling, K.E., Li, Z., and Zhang, Y. (2006). "Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa." Journal of Hydrology, Vol., 327, pp. 140-150 https://doi.org/10.1016/j.jhydrol.2005.11.014
  21. Sophocleous, M. (2002). "Interactions between groundwater and surface water: the state of the science." Hydrogeology Journal, Vol. 10. pp. 52-67 https://doi.org/10.1007/s10040-001-0170-8
  22. Szilagyi, J., Parlange, M.B., and Balint, G. (2006). "Assessing stream-aquifer interactions through inverse modeling of flow routing." Journal of Hydrology, Vol. 327, pp. 208-218 https://doi.org/10.1016/j.jhydrol.2005.11.018
  23. Thomas, A. and Tellam, J. (2006). "Modeling of recharge and pollutant fluxes to urban groundwaters." Science of The Total Environment, Vol. 360, pp. 158-179 https://doi.org/10.1016/j.scitotenv.2005.08.050
  24. Toth, J. (1963). "A theoretical analysis of flow in small drainage basins." Proceedings of Hydrology Symposium, No. 3, Groundwater, pp. 75-96
  25. Younger, P.L., Mackay, R.J., and Connoton, B.J. (1993). "Streambed sediment as a barrier to groundwater pollution: insights from fieldwork and modelling in the River Tames basin." Journal of the Institution of Water and Environmental Management, Vol. 7, pp. 577-585 https://doi.org/10.1111/j.1747-6593.1993.tb00890.x
  26. Winter, T.C. (1999). "Relation of streams, lakes and wetlands to groundwater flow systems." Hydrogeology Journal, Vol. 7, pp. 28-45 https://doi.org/10.1007/s100400050178
  27. Woessner, W.W. (2000). "Stream and fluvial plain ground water interactions: rescaling hydrologic thought." Ground Water, Vol. 38, pp. 423-429 https://doi.org/10.1111/j.1745-6584.2000.tb00228.x

Cited by

  1. Groundwater Balance in Urban Area vol.20, pp.12, 2011, https://doi.org/10.5322/JES.2011.20.12.1553
  2. Drainage Water Quality Evaluation for Irrigation in Al-Ahsa Oasis, Saudi Arabia vol.9, pp.2, 2015, https://doi.org/10.3923/rjet.2015.90.106