DOI QR코드

DOI QR Code

Hydrological Model Response to Climate Change Impact Assessments on Water Resources

유출모형이 기후변화 수자원 영향평가에 미치는 영향 분석

  • Jung, Il-Won (Dept. of Civil and Environmental Engrg., Sejong Univ) ;
  • Lee, Byong-Ju (Dept. of Civil and Environmental Engrg., Sejong Univ) ;
  • Jun, Tae-Hyun (Dept. of Civil and Environmental Engrg., Sejong Univ) ;
  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ)
  • 정일원 (세종대학교 토목환경공학과 BK21) ;
  • 이병주 (세종대학교 토목환경공학과) ;
  • 전태현 (세종대학교 토목환경공학과) ;
  • 배덕효 (세종대학교 물자원연구소.토목환경공학과)
  • Published : 2008.09.02

Abstract

This study investigates differences in hydrological responses to the climatic scenarios resulting from the use of different three hydrological models, PRMS, SLURP, and SWAT. First, the capability of the three models in simulating the present climate water balance components is evaluated at Andong-dam watershed. And then, the results of the models in simulating the impact using hypothetical climate change scenarios are analyzed and compared. The results show that three models have similar capabilities in simulating observed data. However, greater differences in the model results occur when the models are used to simulate the hydrological impact under hypothetical climate change. According as temperature change grows, the differences between model results is increasing because of differences of the evapotranspiration estimation methods. The results suggest that technique that consider the uncertainty by using different hydrological models will be needed when climate change impact assessment on water resources.

본 연구에서는 PRMS, SLURP, SWAT 모형을 이용하여 유출모형에 따라 수자원의 기후변화 영향평가 결과에서 발생할 수 있는 차이를 평가하였다. 이를 위해 먼저 각 모형을 안동댐유역에 적용하여 관측자료에 대한 모의능력을 비교하였다. 그 다음 기온과 강수 변화를 가정한 합성시나리오 상황에서 각 모형별 모의결과를 비교하였다. 분석결과 세 모형은 관측기간에 대해서는 관측유량에 근접한 모의를 하였다. 그러나 강수와 기온의 변화를 고려하였을 경우에는 유출량의 변화량 모의에서 각 모형별로 상이한 결과를 보였다. 특히 기온이 크게 증가할 경우 모형별 결과차이가 증가하는 것으로 분석되었는데, 이것은 각 모델에서 이용하는 증발산량 추정방법의 차이가 가장 크게 영향을 미치는 것으로 분석되었다. 따라서 이러한 불확실성을 고려한 수자원 영향평가 방법이 필요할 것으로 판단되었다.

Keywords

References

  1. 김남원, 이병주, 이정은 (2006). "SWAT 모형을 이용한 충주댐 유역의 융설영향 평가." 한국수자원학회논문집, 한국수자원학회, 제39권, 제10호, pp. 833-844 https://doi.org/10.3741/JKWRA.2006.39.10.833
  2. 김병식, 김형수, 서병하, 김남원 (2004). "기후변화가 용담댐 유역의 유출에 미치는 영향." 한국수자원학회 논문집, 한국수자원학회, 제37권, 제2호, pp. 185-193
  3. 배덕효, 정일원, 이병주 (2007). "A2 시나리오에 따른 국내 수자원의 변동성 전망." 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 921-930 https://doi.org/10.3741/JKWRA.2007.40.12.921
  4. 신사철 (2000). "기후변화 시나리오에 의한 하천 유황의 해석." 한국수자원학회논문집, 한국수자원학회, 제33권, 제5호, pp. 623-634
  5. 신현석, 강두기, 김상단 (2007). "낙동강유역 SWAT 모형 구축 및 물수지 시나리오에 따른 유황분석." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 251-263 https://doi.org/10.3741/JKWRA.2007.40.3.251
  6. 임혁진, 권형중, 배덕효, 김성준 (2006). "CA-Markov기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석." 한국수자원학회논문집, 한국수자원학회, 제39권, 제5호, pp. 453-466 https://doi.org/10.3741/JKWRA.2006.39.5.453
  7. 정일원, 배덕효 (2005). "국내유역에서의 PRMS 모형의 적용성에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제38권, 제9호, pp. 713-725 https://doi.org/10.3741/JKWRA.2005.38.9.713
  8. 정일원, 배덕효, 임은순 (2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 205-214 https://doi.org/10.3741/JKWRA.2007.40.3.205
  9. 황준식, 정대일, 이재경, 김영오 (2007). "기후변화 영향평가를 위한 월 물수지모형의 적용성 검토." 한국수자원학회논문집, 한국수자원학회, 제40권, 제2권, pp.147-158 https://doi.org/10.3741/JKWRA.2007.40.2.147
  10. Allen, R.G., Jensen, M.E., Wright, J.L., and Burman, R.D. (1989). "Operational estimates of evapotranspiration." Agronomy Journal. Vol. 81, pp. 650-662 https://doi.org/10.2134/agronj1989.00021962008100040019x
  11. Arnell, N.W. (1995). Scenarios for hydrological climate change impact studies. In: Oliver, H.R., and Oliver, S.A. (Eds.), The Role of Water and the Hydrological Cycle in Global Change. Springer, Berlin, pp. 389-408
  12. Arnold, J.G., Allen, P.M., and Bemhardt, G. (1993). "A comprehensive surface-groundwater flow model," Journal of Hydrology, Vol. 142, pp. 47-69 https://doi.org/10.1016/0022-1694(93)90004-S
  13. Bae, D.H., Jung, I.W., and Chang, H. (2008). "Potential changes in Korean water resources estimated by high-resolution climate simulation," Climate Research, Vol. 35, pp. 213-226 https://doi.org/10.3354/cr00704
  14. Boorman, D.B., and Sefton, C.E. (1997). "Recognizing the uncertainty in the quantification of the effects of climate change on hydrological response." Climatic Change, Vol. 35, pp. 415-434 https://doi.org/10.1023/A:1005372407881
  15. Burlando, P., and Rosso, R. (2002). "Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy." Hydrological Processes, Vol. 16, pp. 1177-1199 https://doi.org/10.1002/hyp.1056
  16. Dagnachew, L., Christine, V.C., and Francoise, G. (2003). "Hydrological response of a catchment to climate and land use changes in tropical Africa : Case study south central Ethiopia," Journal of Hydrology, Vol. 275, pp. 67-85 https://doi.org/10.1016/S0022-1694(03)00019-2
  17. Fowler, H.J., Blenkinsop, S., and Tebaldi, C. (2007) "Review linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling," International Journal of Climatology, Vol. 27, pp. 1547-1578 https://doi.org/10.1002/joc.1556
  18. Giorgi, F., and Mearns, L.O. (2002). "Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the Reliability Ensemble Average (REA) method," Journal of Climate, Vol. 15, pp. 1141-1158 https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
  19. Hamon, W.R. (1961). "Estimating potential evapotranspiration", Journal of the Hydraulic Division, ASCE, Vol. 87, No. HY3, pp. 107-120
  20. Hogue, T.S., Sorooshian, S., Gupta, V.K., Holz, A., and Braatz, D. (2000). "A multistep automatic calibration scheme for river forecasting models", Journal of Hydrometeorology, Vol. 1, pp. 524-542 https://doi.org/10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
  21. IPCC (2001). Climate change 2001: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press
  22. IPCC (2007). Climate change 2007: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press
  23. Jha, M., Arnold, J.G., Gassman, P.W., Giorgi, F., and Gu R.R. (2006). "Climate change sensitivity assessment on upper Mississippi river basin streamflows using SWAT," Journal of the American Water Resources Association, Vol. 42, No. 4, pp. 997-1016 https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  24. Jiang, T., Chen, Y.D., Xu, C., Chen, X., Chen, X., and Singh, V.P. (2007) "Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China," Journal of Hydrology, Vol. 336, pp. 316-333 https://doi.org/10.1016/j.jhydrol.2007.01.010
  25. Kite, G.W. (1993). "Application of a land class hydrological model to climatic change," Water Resources Research, Vol. 29., No. 7, pp. 2377-2384 https://doi.org/10.1029/93WR00582
  26. Kite, G.W., and Haberlant, U. (1999). "Atmospheric model data for macroscale hydrology," Journal of Hydrology, Vol. 217, pp. 303-313 https://doi.org/10.1016/S0022-1694(98)00230-3
  27. Kite, G.W., Dalton, A., and Dion, K. (1994). "Simulation of streamflow in a macroscale watershed using general circulation model data," Water Resources Research, Vol. 30, No. 5, pp. 1547-1559 https://doi.org/10.1029/94WR00231
  28. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G. (1983). Precipitation-Runoff Modeling System, User's manual, Water-Resources Investigations, pp. 83-4238
  29. Limaye, A.S., Boyington, T.M., Cruise, J.F., Bulusu, A., and Brown, E. (2001). "Macroscale hydrologic modeling for regional climate assessment studies in the Southeastern United States," Journal of the American Water Resources Association, Vol. 37, No. 3, pp. 709-722 https://doi.org/10.1111/j.1752-1688.2001.tb05505.x
  30. Pandey, G.R., Gayan, D.R., Dettinger, M.D., and Georgakakos, K.P. (2000). “A hybrid orographic plus statistical model for downscaling daily precipitation in Northern California,” Journal of Hydrometeorology, Vol. 1, pp. 491-506 https://doi.org/10.1175/1525-7541(2000)001<0491:AHOPSM>2.0.CO;2
  31. Sabourin, J.F. (1996). "Implementation of a distributed hydrologic model: Using SLURP on the Carp watershed." CCRS, Ottawa., 43pp
  32. Xu, C.Y., and Singh, V.P. (2004). "Review on regional water resources assessment under stationary and changing climate." Water Resources Management, Vol. 18, No. 6, pp. 591-612 https://doi.org/10.1007/s11269-004-9130-0

Cited by

  1. Analysis on flood frequency and water quality variations induced by abnormal climate vol.53, pp.9, 2015, https://doi.org/10.1080/19443994.2014.928771
  2. Water Quality Analysis of Hongcheon River Basin Under Climate Change vol.17, pp.4, 2015, https://doi.org/10.17663/JWR.2015.17.4.348
  3. Application of Rainfall Runoff Model with Rainfall Uncertainty vol.42, pp.10, 2009, https://doi.org/10.3741/JKWRA.2009.42.10.773
  4. Assessment of Environmental Flow Impacts for the Gosam Reservoir According to Climate Change vol.58, pp.6, 2016, https://doi.org/10.5389/KSAE.2016.58.6.093
  5. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea vol.401, pp.1-2, 2011, https://doi.org/10.1016/j.jhydrol.2011.02.012
  6. Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir vol.30, pp.5, 2014, https://doi.org/10.15681/KSWE.2014.30.5.491
  7. Integrated Index for Flood Risk Assessment Development Using Bayesian Network vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.269