DOI QR코드

DOI QR Code

Chemical Comparison of Germinated- and Ungerminated-Safflower(Carthamus tinctorius) Seeds

홍화(Carthamus tinctorius L.)씨와 발아홍화씨의 화학성분 비교

  • Kim, Eun-Ok (Dept. of Food Science & Nutrition, Catholic University of Daegu) ;
  • Lee, Ki-Teak (Dept. of Food Science and Technology, Chungnam National University) ;
  • Choi, Sang-Won (Dept. of Food Science & Nutrition, Catholic University of Daegu)
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 이기택 (충남대학교 식품공학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Published : 2008.09.30

Abstract

This study was to investigate the chemical compositions of germinated (GSS)- and ungerminated (UGSS)-safflower (Carthamus tinctorius) seeds. GSS had higher amount of sugar and crude fiber than UGSS, but less amounts of protein and lipid. Levels of $\alpha$-tocopherol and essential amino acids of GSS were higher than those of UGSS, although there are no difference in fatty acid composition between GSS and UGSS. Among the nine phenolic compounds detected, five phenolic compounds, except for two lignans and two flavonoids, were found in both GSS and UGSS. Four serotonin derivatives accounted for about 80 per cent of total phenolic compounds, and levels of five phenolic compounds decreased slightly with germination. These results suggest that germination may enhance the functionality of safflower seed by increasing nutritional compositions and by decreasing phenolic compounds with bitter taste and cathartic effects.

홍화씨를 이용한 골다공증 및 고지혈증 예방용 건강기능식품을 개발하기 위한 연구의 일환으로 홍화씨의 소화성, 기능성 및 기호성을 증대시킬 수 있는 방안으로 발아홍화씨를 제조하여 일반성분 및 기능성성분(지방산, tocopherols, 수용성아미노산 및 페놀화합물)의 함량을 홍화씨와 비교 분석하였다. 홍화씨는 발아하면서 조단백질과 조지방은 감소한 반면, 가용성 무질소물, 조섬유소 및 회분은 다소 증가하는 경향을 나타내었으며, linoleic 및 oleic aicds가 약 80% 이상 거의 대부분을 차지하고 있었으며, 그 외 palmitic, stearic 및 arachidic acids가 주요 지방산으로 나타났고, 발아에 따른 지방산의 조성 비율은 거의 변화가 없었다. 홍화씨와 발아홍화씨의 $\alpha$-tocopherol 함량은 각각 744.7 및 809.0 mg%로서 발아 후 64.3 mg% 증가하였으며, 홍화씨의 주된 아미노산으로 asparagine, arginine, proline, glutamic acid가 차지하고 있었으며, 발아함에 따라 그들의 함량이 크게 증가하였고, 특히 threonine, valine, leucine, isoleucine, phenylalanine, lysine 및 histidine 등의 필수아미노산 함량이 크게 증가하였다. 홍화씨에는 3종의 리그난(8'-hydroxyarctigenin 4'-O-$\beta$-D-glucoside, 8'-hydroxyarctigenin 및 matairesinol)과 4종의 세로토닌유도체[N-feruloylserotonin 5-O-$\beta$-D-glucoside, N-feruloylserotonin, N-(pcoumaroyl)-serotonin 5-O-$\beta$-D-glucoside, N-(p-coumaroyl)serotonin] 그리고 2종의 플라보노이드(acacetin 7-O-$\beta$-D-glucuronide, acacetin) 화합물이 존재하였으며, 발아함에 따라 세로토닌유도체를 함유한 모든 페놀화합물의 함량은 다소 감소하는 경향을 나타내었다. 이와 같이 홍화씨를 발아함에 따라 섬유소 및 유용 기능성성분의 증가와 더불어 설사를 유발하는 고미성분의 감소 그리고 소화성 및 기호성을 떨어뜨리는 홍화씨 껍질의 분리 및 효율성 확대를 이룰 수 있기에 향후 발아홍화씨는 항골다공증 및 항고지혈증 건강기능식품 소재로서 개발 가능성이 높다고 사료된다.

Keywords

References

  1. 이상인. 1981. 본초학. 수서원, 서울. p 459-460
  2. 한대석. 1988. 생약학. 동명사, 서울. p 270-271
  3. 성종환, 하영선, 임무현, 임정교, 강갑석. 2005. 식품과 건강. 형설출판사, 서울. p 108- 109
  4. 김인환. 1992. 신약본초. 인산동천문화사, 서울. p 567-568
  5. Seo HJ, Kim JH, Yun KD, Jeon SM, Ku SK, Lee JH, Moon KD, Choi MS. 2000. The effects of safflower seed powder and its fraction on bone tissue in rib-fractured rats during the recovery. J Korean Nutr 32: 411-420
  6. Chung SY, Choi HJ, Chung MW, Ahn MR, Yoo TM, Rheu HM, Yang JS. 2002. Effects of safflower seed on the fracture healing in rat tibia. Arch Pharm Res 25: 313-317 https://doi.org/10.1007/BF02976632
  7. Kim HJ, Bae YC, Choi SW, Cho SH, Park RW, Choi YS, Lee WJ. 2002. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif Tissue Int 71: 88-94 https://doi.org/10.1007/s00223-001-1080-4
  8. Cho SH, Choi SW, Choi YS, Kim HJ, Park YH, Bae YC, Lee WJ. 2007. Effect of ethanol extract of safflower seed on bone loss in ovariectomized rat. Food Sci Biotechnol 16: 392-397
  9. Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS. 2001. Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. Nutr Res 21: 895-904 https://doi.org/10.1016/S0271-5317(01)00293-7
  10. Cho SH, Choi SW, Choi YS, Lee WJ. 2001. Effects of defatted safflower and perilla seed powders on lipid metabolism in ovariectomized female rats fed high cholesterol diets. J Korean Soc Food Sci Nutr 30: 112-118
  11. Cho JH, Lee HL, Kim TH, Choi SW, Lee WJ, Choi YS. 2004. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J Nutr Sci Vitaminol 50: 32-37 https://doi.org/10.3177/jnsv.50.32
  12. Bae SJ, Shim SM, Park YJ, Lee JY, Chang EJ, Choi SW. 2002. Cytotoxicity of phenolic compounds isolated from seeds of safflower (Carthamus tinctorius L.) on cancer cell lines. Food Sci Biotechnol 11: 140-146
  13. Zhang HL, Nagatsu A, Watanabe T, Sakakibara J, Okuyama H. 1997. Antioxidative compounds isolated from safflower (Carthamus tinctorious L.) oil cake. Chem Pharm Bull 45: 1910-1914 https://doi.org/10.1248/cpb.45.1910
  14. Kang GH, Chang EJ, Choi S. 1999. Antioxidative activity of phenolic compounds in roasted safflower seeds. J Food Sci Nutr 4: 221-225
  15. Roh JS, Sun WS, Oh SU, Lee JI, Oh WT, Kim JH. 1999. In vitro antioxidant activity of safflower (Carthamus tinctorious L.) seeds. Food Sci Biotechnol 8: 88-92
  16. Kim EO, Oh JH, Lee SK, Lee JY, Choi SW. 2007. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci Biotechnol 16: 71-77
  17. Kawashima S, Hayashi M, Takii T, Kimura H, Zhang HL, Nagatsu A, Sakakibara J, Murata K, Oomoto Y, Onozaki K. 1998. Serotonin derivative, N-(p-coumaroy10 serotonin, inhibits the production of TNF-$\alpha$, IL-1$\alpha$, IL-1$\beta$, and IL-6 by endotoxin-stimulated human blood monocytes. J Interferon Cytokine Res 18: 423-428 https://doi.org/10.1089/jir.1998.18.423
  18. Takii T, Hayashi M, Hiroyuki H, Chiba T, Kawashima S, Zhang HL, Nagatsu A, Sakakibara J, Onozaki K. 1999. Serotonin derivative, N-(p-coumaroyl0 serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor ($\beta$FGF) or epidermal growth factor (EGF). J Biochem 125: 910-915 https://doi.org/10.1093/oxfordjournals.jbchem.a022368
  19. Palter R, Lundin RE. 1970. A bitter principle of safflower, matairesinol monoglucoside. Phytochemistry 9: 2407-2409 https://doi.org/10.1016/S0031-9422(00)85750-7
  20. Palter R, Lundin RE, Haddon WF. 1972. A cathartic lignan glycoside from Carthamus tinctorus. Phytochemistry 11: 2871-2874 https://doi.org/10.1016/S0031-9422(00)86527-9
  21. Sakamura A, Terayama Y, Kawakatsu S, Ichihara A, Saito H. 1978. Conjugated serotonins related to cathartic activity un safflower seeds (Carthamus tinctorious L.). Agric Biol Chem 42: 1805-1806 https://doi.org/10.1271/bbb1961.42.1805
  22. Kim EO, Lee JY, Choi SW. 2006. Quantitative changes in phenolic compounds of safflower (Carthamus tinctorius L.) seeds during growth and processing. J Food Sci Nutr 11: 311-317 https://doi.org/10.3746/jfn.2006.11.4.311
  23. Shimoni E. 2004. Stability and shelf life of bioactive compounds during food processing and storage: soy isoflavone. J Food Sci 69: 160-166
  24. Kadlec P, Kaasova J, Bubnik Z. 2003. Chemical and physicochemical changes during microwave treatment of rice. Food Sci Biotechnol 12: 219-223
  25. Kim EM, Lee KJ, Chee KM. 2004. Comparison in isoflavone contents between soybean and soybean sprouts of various soybean cultivars. Korean J Nutr 37: 45-51
  26. Kim JS, Kim JG, Kim WJ. 2004. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J Food Sci Technol 36: 294-298
  27. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130: 1695-1699
  28. Lee JH, Baek IY, Kang NS, Ko JM, Kim HT, Jung CS, Park KY, Ahn YS, Suh DY, Ha TJ. 2007. Identification of phenolic compounds and antioxidant effects from the exudate of germinating peanut (Arachis hypogaea). Food Sci Biotechnol 16: 29-36
  29. Lukasz W, Malgorzata G, Tomasz Z, Waldemar B, Lech R, Stefan J. 2006. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiology 163: 1207-1220 https://doi.org/10.1016/j.jplph.2006.06.014
  30. Saikusa T, Horino T, Mori Y. 1994. Accumulation of $\gamma$- aminobutyric acid (GABA) in the rice germ during water soaking. Biosci Biotech Biochem 58: 2291-2292 https://doi.org/10.1271/bbb.58.2291
  31. Choi HD, Kim YS, Choi IW, Park YK, Park YD. 2006. Hypotensive effect of germinated brown rice on spontaneously hypertensive rats. Korean J Food Sci Technol 38: 448-451
  32. Choi HD, Kim YS, Choi IW, Seog HM, Park YD. 2006. Anti-obesity and cholesterol-lowering effects of germinated brown rice in rats fed with high fat and cholesterol diets. Korean J Food Sci Technol 38: 674-678
  33. Hwang EJ, Lee SY, Kwon SJ, Park MH, Boo HO. 2006. Antioxidative, antimicrobial and cytotoxic activities of Fagopyrum esculentum Möench extract in germinated seeds. Korean J Med Crop Sci 14: 1-7
  34. Korea Food and Drug Administration. 2002. Food Standard Code (Appendix). Seoul, Korea. p 3-29
  35. Shin HS. 1974. Study on lipid metabolism of soybean during sprouting. Korean J Agric Chem 17: 240-246
  36. Lee BJ, Jang HS, Lee GH, Oh MJ. 2003. Changes in chemical compositions of pumpkin (Cucurbita moschata DUCH.) seed sprouts. Korean J Food Preservation 10: 527-533
  37. Kim JH, Kwak DY, Choi MS, Moon KD. 1999. Comparison of the chemical compositions of Korean and Chinese safflower (Carthamus tinctorius L.) seed. Korean J Food Sci Technol 31: 912-918

Cited by

  1. Phenolic Composition, Antioxidant Activity and Anti-Adipogenic Effect of Hot Water Extract from Safflower (Carthamus tinctorius L.) Seed vol.5, pp.12, 2013, https://doi.org/10.3390/nu5124894
  2. Quality Changes of Ground Pork Containing Safflower Seed during Frozen Storage vol.29, pp.4, 2013, https://doi.org/10.9724/kfcs.2013.29.4.417
  3. Anti-Inflammatory, Immunomodulatory, and Heme Oxygenase-1 Inhibitory Activities of Ravan Napas, a Formulation of Uighur Traditional Medicine, in a Rat Model of Allergic Asthma vol.2011, 2011, https://doi.org/10.1155/2011/725926
  4. Changes in the Nutritional Components and Immune-enhancing Effect of Glycoprotein Extract from Pre- and Post-germinated Barley Seeds vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.511
  5. Safflower Seed Extract Inhibits Osteoclast Differentiation by Suppression of the p38 Mitogen-activated Protein Kinase and IκB Kinase Activity vol.26, pp.11, 2012, https://doi.org/10.1002/ptr.4622
  6. Analysis of Food Components of Carthamus Tinctorius L. Seed and its Antimicrobial Activity vol.20, pp.2, 2013, https://doi.org/10.11002/kjfp.2013.20.2.227
  7. Physicochemical and Antioxidant Properties of Broccoli Sprouts Cultivated in the Plant Factory System vol.28, pp.1, 2013, https://doi.org/10.7318/KJFC/2013.28.1.057
  8. Isolation and Identification of Antioxidant Polyphenolic Compounds in Mulberry (Morus alba L.) Seeds vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.517
  9. Nutritional Evaluation of Leafy Safflower Sprouts Cultivated under Different-colored Lights vol.44, pp.2, 2012, https://doi.org/10.9721/KJFST.2012.44.2.224
  10. Physicochemical Characteristics of Ground Pork with Safflower Seed Powder as an Animal Fat Replacer vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.928
  11. Physicochemical Properties of Ground Pork with Safflower (Carthamus tinctorius L.) Seed during Refrigerated Storage vol.28, pp.4, 2012, https://doi.org/10.9724/kfcs.2012.28.4.399
  12. Physicochemical Characteristics of Various Ginseng Seeds vol.45, pp.3, 2013, https://doi.org/10.9721/KJFST.2013.45.3.274
  13. Investigation of Physicochemical Properties of Safflower Sprouts Grown Different Wavelengths of Visible Light and Treated with Different Drying Processes vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.717
  14. Oxidative Stress and Apoptosis-Mediated Pathways vol.46, pp.01, 2018, https://doi.org/10.1142/S0192415X1850009X
  15. Species vol.15, pp.6, 2018, https://doi.org/10.1002/cbdv.201700562
  16. 홍화씨(잇꽃, Carthamus tinctorius L.) 연구 동향에 대한 고찰 vol.24, pp.6, 2011, https://doi.org/10.14369/skmc.2011.24.6.063
  17. Effects of Dietary from Safflower Bud on the Osteoporosis in Ovariectomized Rats vol.20, pp.3, 2008, https://doi.org/10.15616/bsl.2014.20.3.156
  18. Safety Assessment of a New Pigmented Safflower Seed Coat (A82) by a Feeding Study on Rat vol.60, pp.None, 2008, https://doi.org/10.1590/1678-4324-2017160564
  19. 타타리메밀싹의 루틴 함량 향상을 위한 LED 광량 효과와 항산화 활성 vol.28, pp.8, 2008, https://doi.org/10.5352/jls.2018.28.8.977
  20. 국외 수집 홍화 유전자원의 항산화 활성 및 세로토닌 유도체 함량 분석 vol.32, pp.5, 2008, https://doi.org/10.7732/kjpr.2019.32.5.423
  21. 홍화씨 추출물의 in vitro 항산화 및 ethanol로 손상을 유도한 C6 신경교세포 보호 효과 vol.64, pp.1, 2021, https://doi.org/10.3839/jabc.2021.011
  22. Physicochemical properties and antioxidant activities of spray-dried powder from safflower extract vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.218
  23. Impact of Betaine Under Salinity on Accumulation of Phenolic Compounds in Safflower (Carthamus tinctorius L.) Sprouts vol.16, pp.5, 2008, https://doi.org/10.1177/1934578x211015090