Rotifer Brachionus rotundiformis의 개체군 성장과 소화효소 활성의 관계

Relationship between Population Growth and Digestive Enzyme Activity of Rotifer Brachionus rotundiformis

  • 권오남 (북해도대학 대학원수산과학연구원) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Kwon, O-Nam (Division of Marine Biosciences, Graduate School of Fisheries Science, Hokkaido University) ;
  • Park, Heum-Gi (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 발행 : 2008.02.25

초록

본 연구의 목적은 rotifer Brachionus rotundiformis의 영양강화와 자어의 소화기능을 높이기 위해 소화효소 활성이 높은 rotifer의 선택방법을 제시하는 것이다. 소화효소 활성을 측정하는 개체군은 성장과정에 있는 개체군들 중 임의로 표본 수집하여 소화효소활성을 측정하여 결정하였다. 선택된 개체군에서 개체밀도와 성장률의 관계가 RD=5865 SGR-350.08(P<0.001)로 나타났다. 포란률은 성장률과 개체밀도와의 관계가 각각 F=-36.147 SGR+61.652(P<0.05)와 F=-0.0085 RD+66.38(P<0.001)로 나타났다. 성장률과 소화효소 활성의 rotifer 개체당 활성은 Amyl=-1.6482 SGR+3.2498(P<0.05), TAP=-0.8115 SGR+1.1361(P<0.001) 및 TGL+0.0055 SGR+0.0079(P=0.239)로 나타나 TG-lipase 활성에서는 성장률과 관계없는 것으로 나타났다. 또한 포란률과 rotifer 개체당 소화효소 활성의 관계는 Amyl=0.0296 F+1.0981(P<0.001). TAP=0.0252 F+0.0975(P<0.001) 및 TGL=-6E-06 F+0.0113(P=0.915)으로 나타나 TG-lipase 활성이 포란률과 관계없는 것으로 나타났다. 반면 TG-lipase의 단백질 비활성과 포란률, 성장률 및 개체밀도와의 관계는 각각 TGL=-0.0024 F0.2332(P=0.132), TGL=0.1267 SGR+0.005(P<0.01) 및 TGL=0.0002 F-0.0594(P<0.001)로 나타나 TG-lipase 단백질 비활성은 포란률과의 관계를 제외하고 각각 상관된 변화를 보였다. 따라서 rotifer의 영양강화효과와 자어에게 외부기인 소화효소 전달을 위한 높은 소화효소 활성을 보이는 rotifer 개체군이 개체밀도가 높은 개체군보다는 포란률이 높은 경우에 나타났기 때문에 포란률이 높은 개체군을 선택하여 영양강화하고 자어에 공급하는 것이 보다 자어에 유익할 것으로 판단된다.

The purpose of this study was to suggest that selecting method of rotifer with high activity of digestive enzymes for the enrichment effect of rotifer and the increasing of digestive enzymes of fish larvae. the populations assayed the activities of the digestive enzymes were randomly selected out of several population communities cultured with freshwater condensed Chlorella. The relationship with the population density and the growth rate of selected populations was shown to RD=5865 SGR-350.08(P<0.001). The relationships with fecundity of the growth rate and the population density were shown to F=-36.147 SGR+61.652(P<0.05) and F=-0.0085 RD+66.38(P<0.001), respectively. The relationships of the growth rate and the individual activities of digestive enzymes in rotifer were assayed to Amyl=-1.6482 SGR+3.2498(P<0.05), TAP=-0.8115 SGR+1.1361(P<0.001) and TGL+0.0055 SGR+0.0079(P=0.239), respectively. But in TG-lipase was not related significantly with the growth rate. Also the relationships of the fecundity and the individual activities of digestive enzymes in rotifer were shown to Amyl=0.0296 F+1.0981(P<0.001), TAP=0.0252 F+0.0975(P<0.001) and TGL=-6E-06 F+0.0113(P=0.915), respectively. But in TG-lipase was not related significantly with the fecundity. And the relationships with the specific activity of TG-lipase of the fecundity, the growth rate and the population density were TGL=-0.024 F+0.2332(P=0.132), TGL=0.1267 SGR+0.005(P<0.01) and TGL=0.0002 F-0.0594(P<0.001), respectively. In this case, specific activity of TG-lipase was shown the significant relationship with the population density and the growth rate, but it was not related significantly with fecundity. Therefore, Because a population shown the high activity of digestive enzymes for increasing a lipid enrichment effect of a rotifers and receiving the many exogenous digestive enzymes to fish larvae was the population of high fecundity than the population of high rotifer density, to select the population of a high fecundity was suggested to benefit than a high growth rate for fish larvae.

키워드

참고문헌

  1. Arago, C, L. E. C. Conseio, M.T. Dinis and H. Fyhn, 2004. Amino acids pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture, 234, 429−445
  2. Balompapueng, M. D., N. Munuswamy, A. Hagiwara and K. Hirayama, 1997. Effect of disinfectants on the hatching of marine rotifer resting eggs Brachionus plicatilis Muller. Aquaculture Research, 28, 559−565
  3. Bell, M. V. and D. R. Tocher, 1989. Molecular species composition of the major phospholipids in brain and retina from rainbow trout (Salmo gairdneri). Biochem. J. 264, 909−915
  4. Cahu, C. L. and J. L. Zambonino-Infante, 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp. Biochem. Physiol., 109A, 213−222
  5. Cuvier-Pres, A. and P. Kestemont, 2002. Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiol. Biochem., 24, 279−285
  6. Dabrowski, K. and J. Glogowski, 1977. A study of the application of proteolytic enzymes to fish food. Aquaculture, 12, 349−360
  7. Erlanger, B. F., N. Kokowhy and W. Cohen, 1961. The preparation and properties of two new chromogenic substances of trypsin, Arch. Biochem. Biophys., 95, 271−278
  8. Estevez, A., McEvoy, L. A., Bell, J. G., Sargent, J. R., 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180, 321−343
  9. Gilbert, J. J. 1967. Mictic female production in the rotifer, Brachionus calyciflorus. J. Exp. Zool., 153, 113−124
  10. Gwak, W. S. and M. Tanaka, 2002. Changes in RNA, DNA and protein contents of laboratory-reared Japanese flounder Paralichthys olivaceus during metamorphosis and settlement. Fish. Sci., 68. 27−33
  11. Hagiwara, A., K. Hamada, A. Nishi, T. Imaizumi and K. Hirayama. 1993. Mass production of rotifer (Brachionus plicatilis) resting eggs in 50 $m^{3}$ tanks. Nippon Suisan Gakkaishi, 59, 93−98 https://doi.org/10.2331/suisan.59.93
  12. Kolkovski, S., 1997. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass (Dicentrarchus labrax) larvae. Aquaculture, 148, 313−322
  13. Kolkovski, S., 2001. Digestive enzymes in fish larvae and juveniles- implications and applications to formulates diets. Aquaculture, 200, 181−201
  14. Kunitz, M., 1947. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol., 30, 291−310
  15. Kurokawa, T. and T. Suzuki, 1996. Formation of the diffuse pancreas and the development of digestive enzymes synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture, 141, 267−276
  16. Kwon, O. N. and H. G. Park, 2005. Characterization of ${\alpha}$-amylase, total alkaline protease, trypsin and triacylglycerol-lipase activity of the euryhaline rotifer, Brachionus rotundiformis. J. Aquacult., 18, 245−251. (in Korean)
  17. Lee, K. W., 2001. High density culture and feed efficiency for freshwater rotifer, Brachionus calyciflorus Pallas. MS thesis, Kangnung National University, Korea, 51 pp
  18. Lowry, O. H, N. J. Rosebrough, A. L. Farr and R. J. Randall, 1951. Protein measurement with the folic phenol reagent. J. Biol. Chem., 193, 265−275
  19. Ma, H., C. Cahu, J. Zambonino-Infante, H. Yu, Q, Duan, M.L. Gall and K. Mai, 2005. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea), Aquaculture, 245, 239−248
  20. McEvory, M. L., T. Naess, J. G. Bell, O. Lie, 1998. Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods. Aquaculture 163, 237−250
  21. Maruyama, I. and K. Hirayama. 1993. The culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing vitamin $B_{12}$ in its cells. J. World Aquacult. Soc, 24, 194−198
  22. Maruyama, I., T. Nagano, I. Shigeno, Y. Ando, K. Hirayama. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia, 385, 133−138
  23. Oie, G., and Y. Olsen, 1997. Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding condition. Hydrobiologia, 358, 251−258
  24. Olsen. T., K. I. Reitan and O. Vadstein, 1993. Dependence of temperature on loss rates of rotifer, lipids and n3-fatty acids in starved Brachionus plicatilis. Hydrobiologia. 255−256, 13-20 https://doi.org/10.1007/BF00025815
  25. Rainuzzo. J., K. I. Reitan,, Y. Olsen, 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture, 155, 103−115
  26. Park, H. G., 1997. Mass production of resting eggs of Korean rotifer Brachionus plicatilis. Ph. D. thesis, Pukyong National University, Korea, 115 pp
  27. Park, H. G., K. W. Lee, S. K. Kim. 1999. Growth of rotifer by the air, oxygen gas-supplied and the pH-adjusted and productivity of the high density culture. J. Kor. Fish. Soc., 32, 753−757
  28. Peragon, J., J. B. Barroso, L. Garca-Salguero, M. Higuera and J. A. Lupinez, 1999. Carbohydrates affect protein-turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout (Oncorhynchus mykiss). Aquaculture, 179, 425−437
  29. Planas, M. and I. Cunha. 1999. Laviculture of marine fish: problems and perspectives. Aquaculture, 177, 171−190
  30. Sargent, J. R., McEvoy, L. A., Bell, J. G., 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155, 117−127
  31. Schmidt, F. H., H. Stork and K. Dahl., 1974. Lipase, photometric assay. (in) H.U. Bergmeyer (ed.), Methods of enzymatic analysis vol. 2, Academic Press, New York, pp. 819−823
  32. Snell, T. W. and F. H. Hoff, 1987. Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia, 147, 329− 334 https://doi.org/10.1007/BF00025762
  33. Somogyi, M., 1952. Notes on sugar determination. J. Bio. Chem., 195, 19−23
  34. Pourriot, R. and T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia, 104, 213−224
  35. Zambonino-Infante, J. L., C. L. Cahu, 1994. Development and response to a diet change of some digestive enzymes in se bass (Dicentrarchus labrax) larvae. Fish. Physiol. Biochem., 12, 399−408
  36. Zambonino-Infante, J. L., C. L. Cahu, 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol., 130C, 477−487