DOI QR코드

DOI QR Code

On Perturbed Symmetric Distributions Associated with the Truncated Bivariate Elliptical Models

  • Published : 2008.07.16

Abstract

This paper proposes a class of perturbed symmetric distributions associated with the bivariate elliptically symmetric(or simply bivariate elliptical) distributions. The class is obtained from the nontruncated marginals of the truncated bivariate elliptical distributions. This family of distributions strictly includes some univariate symmetric distributions, but with extra parameters to regulate the perturbation of the symmetry. The moment generating function of a random variable with the distribution is obtained and some properties of the distribution are also studied. These developments are followed by practical examples.

Keywords

References

  1. Arellano-Valle, R. B., Branco, M. D. and Genton, M. G. (2006). A unified view on skewed distributions arising from selections, The Canadian Journal of Statistics/La revue Canadienne de Ststistique, 34, 581-601 https://doi.org/10.1002/cjs.5550340403
  2. Arnold, B. C., Beaver, R. J., Groeneveld, R. A. and Meeker, W. Q. (1993). The non-truncated marginal of a truncated bivariate normal distribution, Psychometrika, 58, 471-488 https://doi.org/10.1007/BF02294652
  3. Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178
  4. Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution, Journal of the Royal Statistical Society, Ser.B, 35, 367-389
  5. Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew elliptical distributions, Journal of Multivariate Analysis, 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
  6. Chen, M. H. and Dey, D. K. (1998). Bayesian modeling of correlated binary responses via scale mixture of multivariate normal link functions, Sankhya, 60, 322-343
  7. Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer Verlag, New York
  8. Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions, Chapman & Hall/CRC, New York
  9. Fang, K. T. and Zhang, Y. T. (1990). Generalized Multivariate Analysis, Springer-Verlag, New York
  10. Henze, N. (1986). A probabilistic representation of the 'Skew-normal' distribution, Scandinavian Journal of Statistics, 13, 271-275
  11. Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, John Wiley & Sons, New York
  12. Kim, H. J. (2002). Binary regression with a class of skewed t link models, Communications in Statistics-Theory and Methods, 31, 1863-1886 https://doi.org/10.1081/STA-120014917
  13. Kim, H. J. (2007). A class of weighted normal distributions and its variants useful for inequality constrained analysis, Statistics, 41, 421-441 https://doi.org/10.1080/02331880701442726
  14. Kim, H. J. (2008). A class of weighted multivariate normal distributions and its properties, Journal of the Multivariate Analysis, In press, doi:10.1016/j.jmva.2008.01.008
  15. Ma, Y. and Genton, M. G. (2004). A flexible class of skew-symmetric distributions, Scandinavian Journal of Statistics, 31, 459-468 https://doi.org/10.1111/j.1467-9469.2004.03_007.x
  16. Rudy, D. A. (2002). Intermediate Microeconomic Theory, Digital Authoring Resources, Denver