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On Perturbed Symmetric Distributions Associated
with the Truncated Bivariate Elliptical Models'

Hea-Jung Kim"

Abstract

This paper proposes a class of perturbed symmetric distributions associated
with the bivariate elliptically symmetric(or simply bivariate elliptical) distributions.
The class is obtained from the nontruncated marginals of the truncated bivariate
elliptical distributions. This family of distributions strictly includes some univariate
symmetric distributions, but with extra parameters to regulate the perturbation of
the symmetry. The moment generating function of a random variable with the
distribution is obtained and some properties of the distribution are also studied.
These developments are followed by practical examples.

Keywords: Perturbed symmetric distribution; truncated bivariate elliptical distribution;
Skew-elliptical distribution.
1. Introduction

A distribution of k x 1 random vector X, written X ~ ECy(8,%,g®), is said to
have k-variate elliptically symmetric(or simply elliptical) distribution with location vector
§ € R* and a k x k (positive definite) dispersion matrix ¥ and the density generating
function g(¥). The density of X distribution is given by

F(x10,%) = [£]72g®) [(x - 8)S (x - 0)], (1.1)

for some density generator function g(*) (u), u > 0, such that

/Ooo ws 1 g®) (u)du = ) (kg) . (1.2)

m2

By varying the function ¢(¥), distributions with longer or shorter tails than the k-variate
normal can be obtained. The density (1.1) has appeared at various places in the lit-
- erature, sometimes in a somewhat casual manner. A systematic treatment of this dis-
tribution has been given by Fang et al. (1990) and Fang and Zhang (1990). Various
univariate/multivariate extensions of the distribution is considered by Azzalini (1985),
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Branco and Dey (2001), Azzalini and Capitanio (2003), Ma and Genton (2004), Arellano-
Valle et al. (2006) and Kim (2007, 2008) among others. ' ‘

- The major goal of this paper is to study a class of perturbed symmetric distributions
as an extension of univariate elliptically symmetric distribution. The class is obtained
from deriving the distribution of

Z=[X]a<¥Y <}, (1.3)

where (X,Y) is a bivariate elliptical variable with the location parameter (6y,6:) and
2 x 2 scale matrix ¥. Although cases of perturbed distributions{obtained from a condi-
tioning mechanism) are well addressed in the literature, so far as we know, there are few
results concerning the class of perturbed distributions associated with a doubly trun-
cated bivariate elliptical distribution. This motivates the investigation in this article.
The interest in studying the distribution (1.3} comes from both theoretical and applied
directions. On the theoretical side, it provides a class of distributions that enjoys a num-
ber of formal properties which resernble those of the elliptical distributions as given in
Fang and Zhang (1990) and produces a general class of distributions that strictly includes
many symmetric distributions as well as the univariate skewed distributions considered
by Arellano-Valle et al. (2006). From the applied viewpoint, the distribution is a uni-
modal empirical distribution with presence of skewness and possibly heavy(or light) tail
(see, Figure 3.1). This implies that (1.3) is useful to modeling random phenomena which
have heavier(or lighter) tails than the normal as well as having some skewness. Moreover,
the class of distributions obtained from (1.3} provides yet other models that enable us to
analyze a screened data in terms of the sum of truncated and untruncated observations.

2. Preliminaries

Prior to suggesting the class of perturbed symmetric distributions, we provide lemmas
useful for studying property of the class.

If we set W = {¢;;} with 17, = 90 = 1 and ¥12 = 991 = p, the properties of
EC,(0,¥,¢®) distribution yield following theorems. From now on, we will use ¥ to
denote this standard form of 2 x 2 dispersion matrix.

Lemma 2.1 Let W ~ EC3(0, ¥, ¢?), W = (W, W,)". Then the conditional distribu-
tion of W given that Wi = w is ECy (o, 3, g4(w)) distribution. Here o = pw, 3 =1— P,
Ia(w) = 9P (u+ q(w))/g(l)(q(w)), where g\ (u) = 2.[(}00 g (r? + u)dr and g(w) = w?.

Proof: Straightforward application of the result of Branco and Dey (2001, pp. 102)
yields the result. O

Lemma 2.2 Let W ~ EC(0,¥,¢®), W = (W1, W,)'. If Z is set to equal to W
conditionally on a < Wy < b. Then the pdf of Z is

. fg(l) (Z) {ng(z) ()\lb — )\Z) — ng(z) ()\1& - /\Z)}

Fg(u(b) - Fg(l‘;(a) ’
where A = p//1—p%, A1 = (1 +A%)Y2 = 1/y/1—p? and [, () and F,q)(-) are the
pdf and the cdf of EC;(0,1,9V), respectively. Fy,.., 1s the cdf of EC1(0,1, g4(z)) With
q(z) = 2%

fz(z) for z e R, (2.1)
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Proof: The pdf of Z can be expressed as

Pla < Wy < b|2)fw,(2)

12G) = ——pn W, <b)

Using the property of EC3(0, ¥, g(?) (see, Fang et al. 1990, p.43) we obtain the marginal
distribution, Wy ~ EC;(0,1,¢"). Further Lemma 2.1 gives Wy |[W, = z ~ ECy(a, 3,
9q()) and hence

a—a Wy—a«a
Pla<W,<blz) = P( < )
2 b VB < VB
Fypy(Mb=2z) = Fy ()\1& Az).
Noticing that fw,(2) = f,a)(2) and P(a < W3 < b) = F,0)(b) — F ) (a), we have the
result. O

3. Perturbed Symmetric Distribution

A generalization of Lemma 2.2 yields the following result. Let X = (X,Y)’ and let
X ~ ECy(8,%,¢?) with 6 = (61,62), & = {04;}, 0si = 02 and 013 = po102. Then, the
pdfof Z =X |a <Y < b] variable is

f (1) ’LL1 {ng () )\111,(1)) — )\ul(z)) g ()\1’&(0,) - )\ul(z))}

01 {F9(1) b)) Fg(1 u } ’
for z € R, where ui(z) = (z — 01)/01, u(a) = (a — 02)/02, u(b) = (b — 602)/02, F, Gan ()
is the cdf of EC1(0,1, g, (»)) with g.(z) = u1(z)?. The density of Z variable is obtained

from (2.1) using the transformation relations X = o, W, +60; and Y = ooW5 + 5. From
now on, we use the same notations without redefining.

f2(2) =

(3.1)

Definition 3.1 If a random variable Z has density function (3.1), then we say that Z is

a perturbed symmetric random variable with parameters 8, ¥ and a non-negative perturb
function

vl o B {ng*(z)()\lu(b) - Aui(z)) — Fooo z>()‘1“( a) — )\ul(z))}
P02 020) = By (D)) = Fypy (u(0))} -6

For brevity we shall also say that Z is PS, ;) (0, £, g®).

We see, from (3.1), that the perturbed distribution arise when the symmetric density
fgw (u1(2))/o1 of potential observation z gets distorted so that it is multiplied by some
non-negative perturb function p(z; 63,02, p). From Lemma 2.1 and (3.1), we can get an
alternative and convenient expression for the pdf of PS(, 5 (0, %, g®) distribution as

/“(b) e {{T —ru()}? wy (2)?] dr
1—p?
frz) = =4

1V 1- p2 {Fg(l) (u(b)) - Fgu)(u(a))}

, Z€R. (3.3)
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There are many subclasses of bivariate elliptical distributions, such as bivariate normals,
bivariate t-distributions, symmetric bivariate Pearson types VII, bivariate scale mixture
normal distributions and some others (see, Fang et al. 1990, for the others). These are
the most useful subclasses from both practical and theoretical aspects. In the following
examples, we see that (3.3) yields some perturbed symmetric distributions from these
subclasses.

Example 3.1 (A Perturbed Normal Distribution)
The generator function for a bivariate normal is
@) () = (27)-1 U
9w = 2m) " exp (-5 (3.4)
Thus the density f7(z) of Z ~ PS(, (0, Z,gg\?)) variable is obtained from (3.3) and it is
¢(ur(2)) {(Aru(b) — Mus(2)) — B(Mula) — Aua(2))}
o1{®(u(b)) — ®(u(a))} ’

This agrees with the density given in Kim (2007). Whena =0,b=00,f=0and ¥ =¥,
we see that (3.5) reduces to the density of skew-normal distribution (SA) by Azzalini
(1985). ~

f3(2) = LR, (35)

Example 3.2 (A Perturbed ¢, Distribution)
The generator function for a bivariate ¢t-distribution with the degrees of freedom v is

42

o) = Cr(v +u)” 7, (3.6)

where C; = v"/?T{(v + 2)/2}/(x T{r/2}). It follows from (3.3) that the pdf f5(2) of
PSan (0, %, g,(,z)) distribution is
ey _ S@E{F((2)) - Fa(u(2)}
0= ) - Rty PSR (47

where f,() and F,(-) denote the pdf and the cdf of & univariate standard t,, distribution,
while F,,1(-) is the cdf of a univariate standard ¢, distribution.

Ezample 3.3 (A Perturbed Pearson Type VII Distribution)
A 2 x 1 random vector X is said to have a symmetric bivariate Pearson Type VII
distribution if it has a density generator funetion

-N
W) =C(1+2) ", N>1m>0 o

and C = (rm)~'T(N)/T(N — 1). Some analytic algebra plugging (3.8) in (3.3) leads to
the pdf of PS(, 5)(8, %, g@;) distribution given by

f7(z) = (00)) " g (D Fvms1 (wa(2)) = Fymni(wi(2))}, 2€ R,  (3.10)
where § = FN—l/z,m(u(b)) - FN—l/?,m(u(a))a

_ {Mwu(a) — A (2)}vm + 1

wi(z) — {Au(d) — My (2)}vm + 1
N RO :

Vm+u(2)?

and  wsy{z)
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Here fy_1/2,m(-) and Fy_j/3,,(-) denote the pdf and the cdf of a univariate standard
Pearson type VII distribution with parameters N — 1/2 and m, while Fy pm41(-) is the
cdf of a univariate standard Pearson type VII distribution with parameters N and m+1.

The perturbed Pearson type VII distribution includes a number of important distri-
butions such as the perturbed ¢ distribution(for N=m/2+1) and the perturbed Cauchy
distribution(for m=1 and N=3/2).

Exzample 3.4 (A Perturbed Scale Mixture of Normal Distribution)
The generator function for a bivariate scale mixture of normal is

o) = [ tenkm) e { - b ara, (3.11)

where 7 is a mixing variable with the edf H(n) and K{(7) is a weight function. From
(3.3), the pdf f5(z) of the perturbed scale mixture of normal distribution, written
PSa.5 (0, Z,gg)K), is given as

“) {r—pui()}? | w(z)?]
216, K (n «/1— / /(a) eXp[ Kn)(1-p% 2K(n)} or OH ().

Transforming {r — pu1(2)}//K(n)(1 — p?) to w yields

® — ®(u3(2))}dH (), 3.12
5101\/—/ <\/—)){(()) (u3(2))YdH (n) (3.12)

for z € R, where
u(a)
) ( K(n)) dH(n),

/\1u and w(z) = Aru(a) — )\ul(z).

K (n) K(n)

Note that (3.12) reduces to (3.5) when H(n) is degenerate with K(n) = 1. Also
note that (3.12) is reduced to (3.7) when K(n) = 1/n with H(n) as the cdf of a gamma
distribution, i.e., n ~ G(v/2,2/v) so that vn ~ x2. Other combinations of H(n) and K(n)
functions for the scale mixture of normal distribution are considered by Chen and Dey
(1998) and Branco and Dey (2001), among other. Those combinations can be applied to
(3.12) to coming at various classes of perturbed symmetric distributions. For example,
through the scale mixtures by Chen and Dey (1998), a class of perturbed stable densities,
perturbed logistic densities and that of perturbed symmetric power densities can also be
obtained from (3.12).

f2(z) =

4. Property of the Distribution

4.1. Distributional properties

Now we will state some interesting properties for the PS, 4 (8, X, g(Z)) distribution as

well as the associate examples. Some properties are focused on those of PS, 4 (0,%, gg?H)
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-3 3 4

Figure 3.1: Various Shapes of perturbed symmetric about zero densities with p = 0.8 ({(a)
the pdf of SN (X) = PE(g o) (0, \I/,gg\?)) distribution, where \ = p/m; (b) the pdf
of PE(_ 5.)(0,%,¢%)) distribution; (c) the pdf of PE(_ 52(0, ¥, g}”) distribution with
v = 3; (d) the pdf of PE(_ 5 9)(0, \If,g%f}l) distribution with m = N =T)

which incudes several perturbed distributions obtained from well-known symmetric dis-
tributions.

Property 4.1. If Z ~ PS(, ;)(6,%,9?), then —Z ~ PS(,1(6*, %", ¢?), where §* and
£* are obtained from 6 and ¥ by changing their elements #; and p with —6; and
—p, respectively.

Property 4.2. Let U(Z) = (Z — 8,)/0y, where Z ~ PS(aﬂb)((?,E,gm). Then
U(Z) ~ PS(uta),usy (0, ¥, 9P). (41)

Property 4.3. If Z ~ PS(g, o(, ¥, 9@), its pdf is

fz(2) = %fg(n(n} (2))Fy,e (o, (Aur(2)), for z € R, (4.2

where Fy ., (-) is the cdf of EC1(0,1, g (»)) with ¢*(2) = u1(2)%.
The density (4.2) does not depend on the values of 82 and o3 and it is equivalent to
the univariate “skew-elliptical” distribution introduced by Branco and Dey (2001). In
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this sense, Definition 3.1 extends the result of Branco and Dey (2001) where they studied
only for the case of (f; = 0,02 = 1) and (¢ = 0,b = co). When the relationship between
A and p in (4.2) is considered, we see A has the sign of p, ranges from —o0 to oo and is
equal to zero if and only if p = 0. This directly gives the following property.

Property 4.4. Suppose X ~ EC3(6,%,9%), where X = (X,Y), 8 = (61,62)", £ =
{oi;} and 012 = po102. If p =0 then

[X Y > 65) = [X |Y < 6] ~ EC1(61,011,9). (4.3)

One can give a probabilistic representation of the distribution PS, (6, %, gg?K) in terms
of a scale mixture of independent normal and truncated normal laws. The scale mixture
scheme directly gives the following theorem.

Theorem 4.1 . Conditionally on 7 having the cdf H(n), let V ~ N(u1, K(n)72) and
W ~ N(uz2, K(n)7#) be independent random variables. Then, for any real values a; and
ap with a3 # 0,

Z = a1V + axWigap) ~ PS(a) (0, 5,957 ), (4.4)

where Wy, ;) denotes a truncated N(ug, K(n)73) variable and a and b are lower and
upper truncation points, respectively. 6 = (6,62) with 6; = fol a;p; and Gy = po;
S = {0y}, 0u = o2, with 011 = K(n) Y-, a?1?, 09p = K(n)73 and p = az03/01.

Proof: Let U = a;V + a;W. Then (U, W) is a bivariate normal variable with Ny(4, ¥)
distribution. Conditionally on 7, the distribution of U conditionally on a < W < b is
PS(an (0, E,gﬁ)), by Example 1. Given n, V and W in U = a;V + a;W are independent
normal variables and hence the distribution of U given that a < W < b equals that
of a1V + a2Wy(ay figuring in the statement of Theorem 4.1. Thus the scale mixture
distribution (4.4) is directly obtained by using Example 4. O

When a, = 0, Z is a scale mixture of normal distribution. Thus the representation in
(4.4) veveals the structure of the class of PS(, (6. %, gg?K) distributions and indicates
the kind of departure from the symmetric distribution. Furthermore, the representation
provides one-for-one method of generating a random variable Z with density (3.12). For
generating the truncated normal variable Wy, p, the one-for-one method by Devroye
(1986} may be used.

Corollary 4.1 Conditionally on 7, let V and W be independent N(0, K (7)) random
variables and let (X,Y) ~ Ny(0, K{n)¥), where n is a random variable with the cdf
H(n) and weight function K(5). Then

1 A
A T A Vien = Xla <Y <t~ PS(n(0.%.057)),  (45)

where A\ = p/1/1 — p2.

Proof: Setting py = puy = 0 and 73 = 7o = 1, we have the result from Theorem 4.1. [
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For K(n) = 1, we see that (4.5) is equivalent to the probabilistic representation by
Kim (2007). In the case a = 0 and b = oo, if we set K(n) = 1 and K(n) = 1/n,

PS(a,b)(O,\Il,gg’}K) distributions reduce to SA'(A) by Azzalini (1985) and the skew-t,
distribution, respectively. Their probabilistic representations obtained from (4.5) agree
with those of SAM(X) given in Henze (1986) and skew-t, derived by Kim (2002).

4.2. Moments of the perturbed distributions

In this section we derive a general expression for the moment generating function(mgf)
for the perturbed scale mixture of normal distribution in (3.12). To compute the moments
of Z ~ PS, ) (Q?E,gg?K), it suffices to compute the moments of U(Z) = (Z — 6y)/01.
We see from (3.12) that U{Z) has the density

u(z S b wez) ui(z)) — ®(us(z))}dH 4.6
) = s | ¢(¢E@J{wl<» (N, (46)

for z € R.
Some algebra gives that the moment generating function of U(Z) = (£ — 6y) /0o is

Muz)(0) = 5B [{® (w®) - @ (u@)}e< @] (47)

for t € R, where E, denotes that the expectation is taken with respect to the distribution
of 1) variate having the density dH (7)/dn and

_ooule) _ud)
ut(a) - K(U) p 5(77) i ui(b) - \/m)‘ P\m t.

Naturally, the moments of U(Z) = (Z —6,)/0, can be obtained by using the moment
generating function differentiation. For example:

BU(2)] = My (t)li=o = — 5 By [VE) (0w () — (" (@)}] . (48)

where u*(a) = u{a)/\/K(n) and u*(b) = u(b)/\/K(n). Unfortunately, for higher mo-

ments this rapidly becomes tedious.
An alternative procedure makes use of the fact that

d. . . .
EE{SHW(@} = (k+ D)z*g(z) — z**2¢(z), (4.9)
for k=-1,0,1,2,3,..., yields the following result.

Let W = U(Z)/+y/K(n). Under the distribution (4.6), the relation (4.9) and integrat-
ing by parts gives E[(k + 1)W* — Wk +2] that is

4

e [ [P OB 3 @1 - o @) B @ d ), (410

for k= —1,0,1,..., where V is a N(0,1) variate.
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By setting k = —1,0, 1, we obtain three expressions, which may be solved to yield the
first three moments of U/(Z). Higher moments could be found similarly. One obtains,

BU(Z)] = ~ By [VEm {6 () - 6(u"(@)].
E[U(2)*) =E,[K ()] - %E (K ) B)ow™ (1) - w* (@ow” (@)},
BU)] = = LB, K - 0 +u (D)l ()
~ (3= + u ()"l (@)}

By using the Binomial expansion, one can see that the general formula for the moments
2) N .
of Z ~ PE(, 16,5, g5 5) is

E(Z¥] :Z( )9" 161 E[U(2)7). (4.11)

Jj=0

When 6, = 0, E[Z*] = ofE[U(Z)¥]. Tt is also noted that existence of the moments
depends on the mixing distribution H(n).

The class of perturbed scale mixture of normal distribution includes well-known skew-
elliptical distributions as in the following two examples.

EXAMPLE 5. One member of the perturbed scale mixture normal dlstrlbutlon in

(3.12) is the PS(g, o) (6, % gH K) distribution, for which H is degenerate with K{n) =
From (3.12), we obtain the pdf given by

f3(2) = %¢<u<z)>@<ml<z>), = (412)

This distribution is equivalent to the skew-normal distribution, SN (6, 01, A), by Azzalini
(1985). From (4.11), one finds the moments,

E[Z] =6, + Olp\/g, Var(Z) = o} (1 - -2»:—2)
b ()

These values of Z agree with those given in Arnold et al. (1993). See Azzalini (1985)
and Henze (1986) for the other properties of the distribution.

and

EXAMPLE 6. Another member of the perturbed scale mixture of normal distribution
distribution is the skew-t, distribution. When K(n) = 1/n and n ~ G(v/2,2/v), the pdf
(3.12) of the PS(g, o0y(8, z,gﬁj’)}{) distribution reduces to

Ay (2)vr +1

fz(2) = O%fu(ul(z))le ( (4.14)
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where f,(-) and F,() denote the pdf and the cdf of a univariate standard £, distribution,
while F,;1(-) is the cdf of a univariate standard ¢, distribution. This distribution is
equivalent to the skew-t, distribution, S7(6;,01,v, ), by Kim {2002). From (4.11), we
obtain,

E(Z)=6, + o*lp\/;,i; W/}}, forv > 1,

I {v/2}
Var(Z) = ofy v 5~ E(Z)?, for v > 2,
oz = %, forv > 3, (4.15)
Var({Z):z

where

Azoig)\[(_u_)é( 3T{(v — 1)/2) (1 +A23>],

T 1+ 223 (v — 2)I{v/2} \v -3
C[2v=2) | 20w = 2T{(v - 1)/2)? o p
b= [3@/ =3 T mrppr 1} md A=
g

It is easily seen that the distribution does not depend on 8, and o, and leads to a
parametric class of distributions that have striet inclusion of ¢, distribution (for the case
th =0, 01 = 1 and p = 0) and perturbed Cauchy distribution(for » = 1). See Kim
(2002) for the other properties and applications of the distribution (4.14). Note that
B > 0 by using a numerical evaluation for v > 3. Thus {4.13) and (4.15) imply that the
distributions in both examples are skewed to the right(the left) when p > 0(p < 0}.

5. Applications

The aim of this section is to provide simple applications of the material presented so
far, focusing on those of PS, (9, Z,gﬁ)) and PS(, (0, E,g,(})) distributions.

5.1. Comparing elasticities in regression

Suppose we have a model where quantity ¢ depends on price P, so that the demand
function is
Q = aP?u. (5.1)

When we take logs of (5.1), we obtain log @ = loga + Glog P + logu which is of the
standard form
Y=o +8X+e. (6.2

In the econometric context, 3 is called the price elasticity of the demand Q. The price
elasticity is formally defined as the relative change in quantity demanded divided by the
relative change in price, i.e. §=(percent change in Q)/(percent change in P). See Rudy
(2002) for the analysis of the price elasticity to diagnose consumer expenditure.

Let observational models of two quantities(@, and @2) in (5.1) be

Yij za: +ﬁ71’13 +e1)j> i = 1727 .7 = 13»”&1 (53)
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where e;; “oN (0,77) and e1; and ey; are independent variables. Suppose, from the
microeconomic theory, that the price elasticity of the demand for @ is inelastic to
price so that 8; € (0,1). Then the price elasticities of the demands for ; and Q-
can be compared by the distribution of 82/8; obtained from the Bayesian approach.
We shall take a reference prior that is independently uniform in «, §; and log 72, 50
that w(af, 8;,72) 1/721(0 < B, < 1). It is now clear that the marginal posterior
distributions of 3;’s (¢ = 1,2) are independent and

2 2
4 Data ~ TN (bl, i) I(0< B <1) and BsData~ N <b2, LQ)
S11 So2
for known 72, i = 1,2,
st 53
Bi|Data ~ Tt(,, o (bl, ﬁ> I0< B <1) and Ba|Data ~ te,, o) <b2, A>
S S22
for unknown 72, where b, = Sy;/Si;, (n; — 2)s? = Spo — S8/ Siis Sii = Zyzl(x” - )2,

Soi = 23‘11(%]’ = Fi)(@ij — i)y Soo = D250 (i — 7i)%, @i = Z;ilxij/ni and g; =
>ty yij/ni. Here TN(a,b)I(0 < By < 1) and Tt(,,—1)(a,b)I(0 < By < 1) denote the
normal and t(,,_1y distributions truncated below at 0 and above at 1, respectively. a
and b are the location and scale parameters of each distribution.

For known 77, the posterior distribution function F(c) of B2/ is the same as

P(Z < 0) obtained from Z ~ PS(OJ)(GC,ZC,gg\?)) by Theorem 4.1, where 6, = (61,62)
with 61 = by — cby and 6, = by; ¥, = {oy;} with o7 = A12/S11 + 72/S20, 022 =
1£/S11, 012 = —e72/S11 and p = 012/,/01102. Thus the distribution function F*(z)

of PS(p1)(0, %, g)) variable in (3.5) leads to the distribution function F(c) of 82/,
That is

< 6, 6 ) < 6 1-96 )
L - y T /=) p - L - y T — p
* 011 022 V011 /022
F(C):FC(O):I— p

TEOEE

022 022

where L(«, 3, p) denotes the orthant probability function of the standard bivariate normal
variable defined in Johnson and Kotz (1972). For the case 77 is unknown but with large
n; (1 = 1,2), an approximate posterior distribution function of 33/ can be obtained by

substituting n;s?/(n; —2) for 77, i = 1,2 in the scale matrix ., of the PS(o,1)(0c, e, gg))
distribution.

5.2. Paired sample problem

Let (X1,Y1),..., (Xn,Y,) be paired random sample from bivariate normal distribu-
tion, where Corr(X,,Y;) = p, X; wd N(,be,gz) and Y; i N(uy,0?). Then sampling
distributions of n*/2(X — ux)/s, and n'/2(Y — puy)/s, are identically distributed as
N(0,0%/s2) with s3 /02 ~ G(v/2,2/v), where v = 2n — 2 and

n

st (1 g {zm—xv-zpim—X><n~?>+i<’”i—’7>2}'

i=1 i=1 i=1



494 Hea-Jung Kim

Above result and the definition of the PS, 4)(6, %, g,<,2) } distribution(also see Example 6)
immediately gives

1 X — 5
nz—s’uiz \Y>u,y NST<0,1,V7/\)’
P
X px
nz—_‘s/“t)& §Y</4LY NST(O,l,I/,‘)\),
P

where A = py/1 — p2. From (4.14), we obtain the unconditional pdf of Zx = n'/?(X —
px)/sp that is

)\zX\/V—}-l) + £o(2x) Foun (—)\zxy/uﬁ—l)

h(ZX) = fu(zx)F 1 ( m \/V—_|_7§(

= fu(zX)s

where f,(zx) is the pdf of a standard ¢, distribution. Thus, we see that irrespective of the
value of p (|p| < 1), Zx ~ tan-2. Similar argument gives Zy = n/2(Y — uy)/sp ~ tan—2.
These imply that, Zx and Zy are pivotal quantities for ux and uy for the bivariate
normal population with common variance ¢? and known p.

5.3. A Kalman filtering

A well-known property of the normal distribution is that, if Y is N(Z, 0?) where a
priori Z is a normal variable, then the a posteriori distribution Z is still normal. Kim
(2007) showed that analogous fact is true if a priori Z has probability density function in
(3.5). Under this prior, some simple algebra shows that the a posteriori density function
of Z given Y = y is still of type (3.5) with (61, o1, X, u(a), u(b)) replaced by

/T2 + 8 2 1 1 ~2 2\ ~2
(i Vics uuy (e BN Fi ) T
/72 +1/07% o T2 T2

[ty + 2=t fy, X1

o+ 12 0%+ 72

1

Ao (y — 61) A2 )72

Au(b g 1 A g .
{ 1u(b) + ol + 12 +0%+7'Z

Note that the parameter A shrinks towards 0, independently of ¢ and that the updating
formulae of the first two parameters are the same as those of the normal case.
Consider now the Kalman filtering setting

Zy = pZy + ey,
}/t=Zt+ni? t:1,2,...,

where {e;} is white noise N(0,02) and {7} is white noise N'(0, 02), with {¢;} independent
of {m}. If the initial prior of Z; is normal, then all subsequent posterior distributions of
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Z; given (Y1,...,Y:) are still normal. An analogous property holds for the distribution
(3.5): if the initial prior distributions of Z is of type (3.5), then all subsequent posterior
distributions of Z; given (Y3,...,Y}) are again of type (3.5). This fact follows from the
above conjugacy property and the application of Theorem 4.1. When Z is a random
variable with density function (3.2) and ¢ is an independent N(0,0?) variable, Z + ¢ has
density function of type (3.5) by Theorem 4.1.

6. Conclusion

This paper has presented a new class of perturbed elliptical distributions. To form
the class of distributions, we considered a conditioning method to the bivariate elliptical
distributions. This introduces yet other perturb function, inducing perturbation of the
symmetry with univariate elliptical distribution, that brings additional flexibility of mod-
eling skewed and heavy tailed distribution. The results obtained in this paper extend
many properties of the bivariate elliptical distributions in a nontrivial way. Several prop-
erties of the class are studied, especially for the perturbed normal and perturbed scale
mixture of normal distributions. The study shows that we have at hand a class of dis-
tributions with following properties: (i) strict inclusion of the normal, skew-normal and
their scale mixture densities, (ii) mathematical tractability and (iii) wide applicability in
solving statistical problems as demonstrated by Section 5.
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