Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk (Department of Environmental Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Choi, Hyung-Min (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • Published : 2008.07.31

Abstract

In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

Keywords

References

  1. Agate, A. D. 1996. Recent advances in microbial mining. World J. Microbiol. Biotechnol. 12: 487-495 https://doi.org/10.1007/BF00419462
  2. An, Y. J., Y. K. Kim, T. I. Kwon, and S. W. Jeong. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326: 85-93 https://doi.org/10.1016/j.scitotenv.2004.01.002
  3. Baillet, F., J. P. Magnin, and A. Cheruy. 1997. Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass. Environ. Technol. 18: 631-638 https://doi.org/10.1080/09593331808616581
  4. Blake II, R. C., G. T. Howard, and S. McGinness. 1994. Enhanced yields of iron-oxidizing bacteria by in-situ electrochemical reduction of soluble iron in the growth medium. Appl. Environ. Microbiol. 60: 2704-2710
  5. Bosecker, K. 1997. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 20: 591-604 https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  6. Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions (with discussion). J. Royal Statistical Soc. Series B 13: 1-45
  7. Brahmaprakash, G. P., P. Devasia, K. S. Jagadish, K. A. Natarajan, and G. R. Rao. 1988. Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc. Bull. Mater. Sci. 10: 461-465 https://doi.org/10.1007/BF02744659
  8. Cabrera, G., J. M. Gomez, and D. Cantero. 2005. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Proc. Biochem. 40: 2683-2687
  9. Das, A., J. M. Modak, and K. A. Natarajan. 1997. Studies on multimetal ion tolerance of Thiobacillus ferrooxidans. Minerals Eng. 10: 743-749 https://doi.org/10.1016/S0892-6875(97)00052-6
  10. Dave, S. R., K. A. Ayappan, and J. V. Bhat. 1979. Biooxidation studies with Thiobacillus ferrooxidans in the presence of copper and zinc. Trans IMM C 88: C234-C237
  11. De, G. C., D. J. Oliver, and B. M. Pesic. 1997. Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. Hydrometallurgy 44: 53-63 https://doi.org/10.1016/S0304-386X(96)00030-8
  12. Demergasso, C. S., P. A. Galleguillos P., L. V. Escudero G., V. J. Zepeda A., D. Castillo, and E. O. Casamayor. 2005. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80: 241-253 https://doi.org/10.1016/j.hydromet.2005.07.013
  13. Dispirito, A. A. and O. H. Tuovinen. 1982. Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans and their elimination by subculturing in media containing CuSO4. J. Gen. Microbiol. 129: 2969-2972
  14. Harahuc, L., H. M. Lizama, and I. Suzuki. 2000. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66: 1031-1037 https://doi.org/10.1128/AEM.66.3.1031-1037.2000
  15. Huber, H. and K. O. Stetter. 1990. Thiobacillus cuprinus sp. nov., a novel facultative organotrophic metal-mobilizing bacterium. Appl. Environ. Microbiol. 56: 315-322
  16. Imai, K., T. Sugio, T. Tsuchida, and T. Tano. 1975. Effect of heavy metal ions on the growth and iron-oxidizing activity of Thiobacillus ferrooxidans. Agric. Biol. Chem. 39: 1349-1354 https://doi.org/10.1271/bbb1961.39.1349
  17. Kawabe, Y., C. Inoue, K. Suto, and T. Chida. 2003. Inhibitory effect of high concentration of ferric ions on the activity of Acidithiobacillus ferrooxidans. J. Biosci. Bioeng. 96: 375-379 https://doi.org/10.1016/S1389-1723(03)90140-X
  18. Keeling, S. E., M.-L. Palmer, F. C. Caracatsanis, J. A. Johnson, and H. R. Watling. 2005. Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Minerals Eng. 18: 1289-1296 https://doi.org/10.1016/j.mineng.2005.05.015
  19. Khalil, M. A., H. M. Abdel-Lateif, B. M. Bayoumi, and N. M. van Straalen. 1996. Analysis of separate and combined effect of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Appl. Soil Ecol. 4: 213-219 https://doi.org/10.1016/S0929-1393(96)00115-1
  20. Krebs, W., C. Brombaacher, P. P. Bosshard, R. Bachofen, and H. Brandl. 1997. Microbial recovery of metals from soils. FEMS Microbiol. Rev. 20: 605-617 https://doi.org/10.1111/j.1574-6976.1997.tb00341.x
  21. Ledue, L. G. and G. D. Ferroni. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14: 103-120 https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  22. Magnin, J., F. Bailet, A. Boyer, R. Zlatev, M. Luca, A. Cheruy, and P. Ozil. 1998. Augmentation, par regeneration electrochimique du substrat, de la productiond'nue biomasse (Thiobacillus ferrooxidans DMS 583) pour nn procede biologique de recuperation de metanx. Can. J. Chem. Eng. 76: 978-984 https://doi.org/10.1002/cjce.5450760602
  23. Norris, P. R., L. Parrott, and R. M. Marsh. 1986. Moderately thermophilic mineral-oxidizing bacteria. Biotechnol. Bieng. Symp. 16: 253-262
  24. Pape-Lindstrom, P. A. and M. J. Lydy. 1997. Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ. Toxicol. Chem. 16: 2415-2420 https://doi.org/10.1002/etc.5620161130
  25. Playle, R. C. 2004. Using multiple metal gill binding models and the toxic unit concept to help multiple-metal toxicity results. Aquat. Toxicol. 67: 359-370 https://doi.org/10.1016/j.aquatox.2004.01.017
  26. Posthuma, L., R. Baerselman, R. P. M. Van Veen, and E. M. Dirven-Van Breemen. 1997. Single and joint toxic effect of copper and zinc on reproduction of Enchytraeus crypticus in relation to sorption of metals in soils. Ecotoxicol. Environ. Saf. 38: 108-121 https://doi.org/10.1006/eesa.1997.1568
  27. Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274 https://doi.org/10.1038/sj.jim.2900522
  28. Rehm, H. J. and G. Reed (eds.). 1988. Biotechnology, Vol. 6, p. 367. Verlag Chemie
  29. Ryu, H. W., K. S. Cho, Y. K. Chang, S. D. Kim, and T. Mori. 1995. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans. J. Ferment. Bioeng. 80: 46-52 https://doi.org/10.1016/0922-338X(95)98175-K
  30. Ryu, H. W., Y. K. Chang, and S. D. Kim. 1993. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferrooxidans. Fuel Proc. Technol. 36: 267-275 https://doi.org/10.1016/0378-3820(93)90036-4
  31. Sampson, M. I. and C. V. Phillips. 2001. Influence of base metals on the oxidizing ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophilies. Minerals Eng. 14: 317-340 https://doi.org/10.1016/S0892-6875(01)00004-8
  32. Silver, M. and A. E. Torma. 1974. Oxidation of metal sulfides by T. ferrooxidans grown on different substrates. Can. J. Microbiol. 20: 141-147 https://doi.org/10.1139/m74-023
  33. Tuovinen, O. H., S. I. Niemela, and H. G. Gyllenberg. 1971. Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek 37: 489-496 https://doi.org/10.1007/BF02218519
  34. Van der Geest, H. G., G. D. Greve, M.-E. Boivin, M. H. S. Kraak, and C. A. M. van Gestel. 2000. Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environ. Toxicol. Chem. 19: 2900-2905 https://doi.org/10.1002/etc.5620191208
  35. Wei, W., Z. Zheng, Y. Liu, and X. Xhu. 1998. Optimizing the culture conditions for higher Lnulinase production by Kluyveromyces sp. Y-85 and scaling-up fermentation. J. Ferment. Bioeng. 86: 395-399 https://doi.org/10.1016/S0922-338X(99)89011-4