Inactivation of Listeria monocytogenes in Brine and Saline by Alternating High-Voltage Pulsed Current

  • Lee, Mi-Hee (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Han, Dong-Wook (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Woo, Yeon-I. (Department of Medical Engineering, Yonsei University College of Medicine) ;
  • Uzawa, Masakazu (Applied Science Co. Ltd.) ;
  • Park, Jong-Chul (Department of Medical Engineering, Yonsei University College of Medicine)
  • Published : 2008.07.31

Abstract

The inactivating efficiency of alternating high-voltage pulsed (AHVP) current was investigated in brine (20 w/v% NaCl) and saline (0.9 w/v% NaCl) inoculated with $1\times10^7$ cells/ml of Listeria monocytogenes. AHVP current at 12 V with 1 pulse completely inactivated L. monocytogenes in brine within 3 ms, while the bacteria in saline were fully inactivated by 10-pulsed electric treatment at 12 V within the same time. Electron microscopic observation demonstrated substantial structural damage of electrically treated L. monocytogenes in brine. These results suggest that AHVP treatment would be effective for the rapid and complete inactivation of L. monocytogenes in brine or saline solution.

Keywords

References

  1. Cho, S. Y., B. K. Park, K. D. Moon, and D. H. Oh. 2004. Prevalence of Listeria monocytogenes and related species in minimally processed vegetables. J. Microbiol. Biotechnol. 14: 515-519
  2. Gailey, J. K., J. S. Dickson, and W. Dorsa. 2003. Survival of Listeria monocytogenes in a simulated recirculating brine chiller system. J. Food Prot. 66: 1840-1844 https://doi.org/10.4315/0362-028X-66.10.1840
  3. Glass, K. A. and M. P. Doyl. 1989. Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microbiol. 55: 1565-1569
  4. Gomez, N., D. Garcia, I. Alvarez, S. Condon, and J. Raso. 2005. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. Int. J. Food Microbiol. 103: 199-206 https://doi.org/10.1016/j.ijfoodmicro.2004.11.033
  5. Greer, G. G., F. Nattress, B. Dilts, and L. Baker. 2004. Bacterial contamination of recirculating brine used in the commercial production of moisture-enhanced pork. J. Food Prot. 67: 185-188 https://doi.org/10.4315/0362-028X-67.1.185
  6. Jeong, J., J. Y. Kim, and J. Yoon. 2006. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 40: 6117-6122 https://doi.org/10.1021/es0604313
  7. Lee, S. H. and J. F. Frank. 1992. Competitive growth and attachment of Listeria monocytogenes and Lactococcus lactis ssp. lactis ATCC 11454. J. Microbiol. Biotechnol. 2: 73-77
  8. Liu, W. K., M. R. W. Brown, and T. S. J. Elliott. 1997. Mechanisms of the bactericidal activity of low amperage electric current. J. Antimicrob. Chemother. 39: 687-695 https://doi.org/10.1093/jac/39.6.687
  9. Lojewska, Z., D. L. Farkas, B. Ehrenberg, and L. M. Loew. 1989. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56: 121-128 https://doi.org/10.1016/S0006-3495(89)82657-8
  10. Miller, A. J., J. E. Call, and B. S. Eblen. 1997. Growth, injury, and survival potential of Yersinia enterocolitica, Listeria monocytogenes, and Staphylococcus aureus in brine chiller conditions. J. Food Prot. 60: 1334-1340 https://doi.org/10.4315/0362-028X-60.11.1334
  11. Muraji, M., W. Tatebe, and H. Berg. 1998. The influence of extracellular alkali and alkaline-earth ions on electropermeation of Saccharomyces cerevisiae. Bioelectrochem. Bioenerg. 46: 293-295 https://doi.org/10.1016/S0302-4598(98)00167-6
  12. NA, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  13. Park, J.-C., M. S. Lee, D. H. Lee, B. J. Park, D.-W. Han, M. Uzawa, and K. Takatori. 2003. Inactivation of bacteria in seawater by low-amperage electric current. Appl. Environ. Microbiol. 69: 2405-2408 https://doi.org/10.1128/AEM.69.4.2405-2408.2003
  14. ark, J.-C., M. S. Lee, D.-W. Han, D. H. Lee, B. J. Park, I.-S. Lee, M. Uzawa, M. Aihara, and K. Takatori. 2004. Inactivation of Vibrio parahaemolyticus in effluent seawater by alternatingcurrent treatment. Appl. Environ. Microbiol. 70: 1833-1835 https://doi.org/10.1128/AEM.70.3.1833-1835.2004
  15. Park, S. Y., J.-W. Choi, J. Yeon, M. J. Lee, D. H. Chung, M.-G. Kim, et al. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol. 15: 1323-1329
  16. Samelis, J., J. N. Sofos, P. Kendall, and G. C. Smith. 2001. Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. Appl. Environ. Microbiol. 67: 2410-2420 https://doi.org/10.1128/AEM.67.6.2410-2420.2001
  17. Taormina, P. J. and L. R. Beuchat. 2001. Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Appl. Environ. Microbiol. 67: 2555-2563 https://doi.org/10.1128/AEM.67.6.2555-2563.2001
  18. Venkitanarayanan, K. S., G. O. Ezeike, Y. C. Hung, and M. P. Doyle. 1999. Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl. Environ. Microbiol. 65: 4276-4279
  19. Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175-256 https://doi.org/10.1007/BFb0034499