References
- Bramhachari, P. V., P. B. Kishor, R. Ramadevi, R. Kumar, R. B. Rao, and S. K. Dubey. 2007. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 17: 44-51
- Butler, S. M. and A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101: 5018-5023
- Caiazza, N. C., J. H. Merritt, K. M. Brothers, and G. A. O' Toole. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189: 3603-3612 https://doi.org/10.1128/JB.01685-06
- Choi, K. H., A. Kumar, and H. P. Schweizer. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods. 64: 391-397 https://doi.org/10.1016/j.mimet.2005.06.001
- Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352
- Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322 https://doi.org/10.1126/science.284.5418.1318
- D'Argenio, D. A., M. Calfee, P. B. Rainey, and E. C. Pesci. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184: 6481-6489 https://doi.org/10.1128/JB.184.23.6481-6489.2002
- Darzins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric single-domain response regulator CheY. J. Bacteriol. 175: 5934-5944 https://doi.org/10.1128/jb.175.18.5934-5944.1993
- Drenkard, E. and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743 https://doi.org/10.1038/416740a
- Friedman, L. and R. Kolter. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457-4465 https://doi.org/10.1128/JB.186.14.4457-4465.2004
- Friedman, L. and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675-690 https://doi.org/10.1046/j.1365-2958.2003.03877.x
- Govan, J. R. and V. Deretic. 1995. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574
- Hassett, D. J., J. Cuppoletti, B. Trapnell, S. V. Lymar, J. J Rowe, S. S. Yoon, et al. 2002 Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443 https://doi.org/10.1016/S0169-409X(02)00152-7
- Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages in various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376
- Heo, Y.-J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007a. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895 https://doi.org/10.1099/mic.0.2007/007260-0
- Heo, Y.-J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007b. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185
- Hickman, J. W., D. F. Tifrea, and C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102: 14422-14427
- Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86 https://doi.org/10.1016/S0378-1119(98)00130-9
- Horton, R. M., Z. L. Cai, S. N. Ho, and L. R. Pease. 1990. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528-535
- Kirisits, M. J., L. Prost, M. Starkey, and M. R. Parsek. 2005. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71: 4809-4821 https://doi.org/10.1128/AEM.71.8.4809-4821.2005
- Klausen, M., A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50: 61-68 https://doi.org/10.1046/j.1365-2958.2003.03677.x
- Kolter, R. and E. P. Greenberg. 2006. Microbial sciences: The superficial life of microbes. Nature 441: 300-302 https://doi.org/10.1038/441300a
- Kulasekara, H., V. Lee, A. Brencic, N. Liberati, J. Urbach, S. Miyata, et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3',5')-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 103: 2839-2844
- Lee, C. Y., J. W. Chung, J. H. Kim, and K. J. Cho. 2006. Identification of a gene required for gliding motility in Myxococcus xanthus. J. Microbiol. Biotechnol. 16: 771-777
- Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major atalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
- Lee, V. T., J. M. Matewish, J. L. Kessler, M. Hyodo, Y. Hayakawa, and S. Lory. 2007 A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65: 1474-1484 https://doi.org/10.1111/j.1365-2958.2007.05879.x
- Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103: 2833-2838
- MacNeil, S. D., A. Mouzeyan, and P. L. Hartzell. 1994. Genes required for both gliding motility and development in Myxococcus xanthus. Mol. Microbiol. 14: 785-795 https://doi.org/10.1111/j.1365-2958.1994.tb01315.x
- May, T. B., D. Shinabarger, R. Maharaj, J. Kato, L. Chu, J. D. DeVault, et al. 1991. Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev. 4: 191-206 https://doi.org/10.1128/CMR.4.2.191
- Murray, T. S. and B. I. Kazmierczak. 2006. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188: 6995-7004 https://doi.org/10.1128/JB.00790-06
- Murray, T. S., M. Egan, and B. I. Kazmierczak. 2007. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19: 83-88 https://doi.org/10.1097/MOP.0b013e3280123a5d
- Nguyen, D. and P. K. Singh. 2006. Evolving stealth: Genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc. Natl. Acad. Sci. USA 103: 8305-8306
- O'Toole, G. A., L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver, and R. Kolter. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310: 91-109 https://doi.org/10.1016/S0076-6879(99)10008-9
- O'Toole, G. A., K. A. Gibbs, P. W. Hager, P. V. Jr. Phibbs, and R. Kolter. 2000. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182: 425-431 https://doi.org/10.1128/JB.182.2.425-431.2000
- Overhage, J., M. Schemionek, J. S. Webb, and B. H. Rehm. 2005. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl. Environ. Microbiol. 71: 4407-4413 https://doi.org/10.1128/AEM.71.8.4407-4413.2005
- Parsek, M. R. and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701 https://doi.org/10.1146/annurev.micro.57.030502.090720
- Romling, U. and D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9: 218-228 https://doi.org/10.1016/j.mib.2006.02.010
- Semmler, A. B., C. B. Whitchurch, and J. S. Mattick. 1999. Reexamination of twitching motility in Pseudomonas aeruginosa. Microbiology 145: 2863-2873 https://doi.org/10.1099/00221287-145-10-2863
- Shrout, J. D., D. L. Chopp, C. L. Just, M. Hentzer, M. Givskov, and M. R. Parsek. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62: 1264-1277 https://doi.org/10.1111/j.1365-2958.2006.05421.x
- Smith, E. E., D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffmann, D. A. D'Argenio, et al. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103: 8487-8492
- Spiers, A. J., S. G. Kahn, J. Bohannon, M. Travisano, and P. B. Rainey. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161: 33-46
- Stoodley, P., R. Cargo, C. J. Rupp, S. Wilson, and I. Klapper. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29: 361-367 https://doi.org/10.1038/sj.jim.7000282
- Tremblay, J., A. P. Richardson, F. Lepine, and E. Deziel. 2007. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ. Microbiol. 9: 2622-2630 https://doi.org/10.1111/j.1462-2920.2007.01396.x
- Vallet, I., J. W. Olson, S. Lory, A. Lazdunski, and A. Filloux. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA 98: 6911-6916
- Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
- Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100: 7907-7912