Effect of PEL Exopolysaccharide on the wspF Mutant Phenotypes in Pseudomonas aeruginosa PA14

  • Published : 2008.07.31

Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen that produces and secretes exopolysaccharides (EPS), in which cells are embedded to form a highly organized community structure called biofilm. Here, we characterized the role of cyclic diguanylate (c-di-GMP) and EPS (PEL) overproduction in the wspF mutant phenotypes of P. aeruginosa PA14 (wrinkly appearance, hyperadherence, impaired motilities, and reduced virulence in acute infections). We confirmed that the elevated c-di-GMP level plays a key role in all the wspF mutant phenotypes listed above, as assessed by ectopic expression of a c-di-GMP-degrading phophodiesterase (PvrR) in the wspF mutant. In contrast, PEL EPS, which is overproduced in the wspF mutant, was necessary for wrinkly appearance and hyperadherence, but not for the impaired flagellar motilities and the attenuated virulence of the wspF mutant. These results suggest that c-di-GMP affects flagellar motility and virulence, independently of EPS production and surface adherence of this bacterium.

Keywords

References

  1. Bramhachari, P. V., P. B. Kishor, R. Ramadevi, R. Kumar, R. B. Rao, and S. K. Dubey. 2007. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 17: 44-51
  2. Butler, S. M. and A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101: 5018-5023
  3. Caiazza, N. C., J. H. Merritt, K. M. Brothers, and G. A. O' Toole. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189: 3603-3612 https://doi.org/10.1128/JB.01685-06
  4. Choi, K. H., A. Kumar, and H. P. Schweizer. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods. 64: 391-397 https://doi.org/10.1016/j.mimet.2005.06.001
  5. Choi, Y.-S., D.-H. Shin, I.-Y. Chung, S.-H. Kim, Y.-J. Heo, and Y.-H. Cho. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17: 1344-1352
  6. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322 https://doi.org/10.1126/science.284.5418.1318
  7. D'Argenio, D. A., M. Calfee, P. B. Rainey, and E. C. Pesci. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184: 6481-6489 https://doi.org/10.1128/JB.184.23.6481-6489.2002
  8. Darzins, A. 1993. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric single-domain response regulator CheY. J. Bacteriol. 175: 5934-5944 https://doi.org/10.1128/jb.175.18.5934-5944.1993
  9. Drenkard, E. and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740-743 https://doi.org/10.1038/416740a
  10. Friedman, L. and R. Kolter. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457-4465 https://doi.org/10.1128/JB.186.14.4457-4465.2004
  11. Friedman, L. and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675-690 https://doi.org/10.1046/j.1365-2958.2003.03877.x
  12. Govan, J. R. and V. Deretic. 1995. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574
  13. Hassett, D. J., J. Cuppoletti, B. Trapnell, S. V. Lymar, J. J Rowe, S. S. Yoon, et al. 2002 Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: Rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443 https://doi.org/10.1016/S0169-409X(02)00152-7
  14. Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages in various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376
  15. Heo, Y.-J., I.-Y. Chung, K. B. Choi, G. W. Lau, and Y.-H. Cho. 2007a. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153: 2885-2895 https://doi.org/10.1099/mic.0.2007/007260-0
  16. Heo, Y.-J., I.-Y. Chung, K. B. Choi, and Y.-H. Cho. 2007b. R-Type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 17: 180-185
  17. Hickman, J. W., D. F. Tifrea, and C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102: 14422-14427
  18. Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86 https://doi.org/10.1016/S0378-1119(98)00130-9
  19. Horton, R. M., Z. L. Cai, S. N. Ho, and L. R. Pease. 1990. Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528-535
  20. Kirisits, M. J., L. Prost, M. Starkey, and M. R. Parsek. 2005. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71: 4809-4821 https://doi.org/10.1128/AEM.71.8.4809-4821.2005
  21. Klausen, M., A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50: 61-68 https://doi.org/10.1046/j.1365-2958.2003.03677.x
  22. Kolter, R. and E. P. Greenberg. 2006. Microbial sciences: The superficial life of microbes. Nature 441: 300-302 https://doi.org/10.1038/441300a
  23. Kulasekara, H., V. Lee, A. Brencic, N. Liberati, J. Urbach, S. Miyata, et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3',5')-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA 103: 2839-2844
  24. Lee, C. Y., J. W. Chung, J. H. Kim, and K. J. Cho. 2006. Identification of a gene required for gliding motility in Myxococcus xanthus. J. Microbiol. Biotechnol. 16: 771-777
  25. Lee, J.-S., Y.-J. Heo, J.-K. Lee, and Y.-H. Cho. 2005. KatA, the major atalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399-4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
  26. Lee, V. T., J. M. Matewish, J. L. Kessler, M. Hyodo, Y. Hayakawa, and S. Lory. 2007 A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65: 1474-1484 https://doi.org/10.1111/j.1365-2958.2007.05879.x
  27. Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103: 2833-2838
  28. MacNeil, S. D., A. Mouzeyan, and P. L. Hartzell. 1994. Genes required for both gliding motility and development in Myxococcus xanthus. Mol. Microbiol. 14: 785-795 https://doi.org/10.1111/j.1365-2958.1994.tb01315.x
  29. May, T. B., D. Shinabarger, R. Maharaj, J. Kato, L. Chu, J. D. DeVault, et al. 1991. Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev. 4: 191-206 https://doi.org/10.1128/CMR.4.2.191
  30. Murray, T. S. and B. I. Kazmierczak. 2006. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188: 6995-7004 https://doi.org/10.1128/JB.00790-06
  31. Murray, T. S., M. Egan, and B. I. Kazmierczak. 2007. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19: 83-88 https://doi.org/10.1097/MOP.0b013e3280123a5d
  32. Nguyen, D. and P. K. Singh. 2006. Evolving stealth: Genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc. Natl. Acad. Sci. USA 103: 8305-8306
  33. O'Toole, G. A., L. A. Pratt, P. I. Watnick, D. K. Newman, V. B. Weaver, and R. Kolter. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310: 91-109 https://doi.org/10.1016/S0076-6879(99)10008-9
  34. O'Toole, G. A., K. A. Gibbs, P. W. Hager, P. V. Jr. Phibbs, and R. Kolter. 2000. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182: 425-431 https://doi.org/10.1128/JB.182.2.425-431.2000
  35. Overhage, J., M. Schemionek, J. S. Webb, and B. H. Rehm. 2005. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl. Environ. Microbiol. 71: 4407-4413 https://doi.org/10.1128/AEM.71.8.4407-4413.2005
  36. Parsek, M. R. and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701 https://doi.org/10.1146/annurev.micro.57.030502.090720
  37. Romling, U. and D. Amikam. 2006. Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. 9: 218-228 https://doi.org/10.1016/j.mib.2006.02.010
  38. Semmler, A. B., C. B. Whitchurch, and J. S. Mattick. 1999. Reexamination of twitching motility in Pseudomonas aeruginosa. Microbiology 145: 2863-2873 https://doi.org/10.1099/00221287-145-10-2863
  39. Shrout, J. D., D. L. Chopp, C. L. Just, M. Hentzer, M. Givskov, and M. R. Parsek. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62: 1264-1277 https://doi.org/10.1111/j.1365-2958.2006.05421.x
  40. Smith, E. E., D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffmann, D. A. D'Argenio, et al. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103: 8487-8492
  41. Spiers, A. J., S. G. Kahn, J. Bohannon, M. Travisano, and P. B. Rainey. 2002. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161: 33-46
  42. Stoodley, P., R. Cargo, C. J. Rupp, S. Wilson, and I. Klapper. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29: 361-367 https://doi.org/10.1038/sj.jim.7000282
  43. Tremblay, J., A. P. Richardson, F. Lepine, and E. Deziel. 2007. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ. Microbiol. 9: 2622-2630 https://doi.org/10.1111/j.1462-2920.2007.01396.x
  44. Vallet, I., J. W. Olson, S. Lory, A. Lazdunski, and A. Filloux. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA 98: 6911-6916
  45. Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
  46. Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100: 7907-7912