Rhizobacterial Exopolysaccharides Elicit Induced Resistance on Cucumber

  • Park, Kyung-Seok (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Kloepper, Joseph W. (Department of Entomology and Plant Pathology, Auburn University) ;
  • Ryu, Choong-Min (Department of Entomology and Plant Pathology, Auburn University)
  • Published : 2008.06.30

Abstract

The role of exopolysaccharides (EPSs) from a plant growth-promoting rhizobacterium, Burkholderia gladioli IN26, on elicitation of induced systemic resistance was investigated. A purified EPS induced expression of PR-1a::GUS on tobacco and elicited induced resistance against Colletotrichum orbiculare on cucumber. The maximum level of disease protection was noted when seeds were soaked in 200 ppm of the EPS. Our results indicate that EPS from specific rhizobacteria can elicit induced resistance and suggest that bacterial EPS might be a useful elicitor of resistance under field conditions.

Keywords

References

  1. Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 3393-3398 https://doi.org/10.1128/AEM.66.8.3393-3398.2000
  2. Cerning, J., C. Bouillanne, M. Desmazeaud, and M. Landon. 1986. Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625- 628 https://doi.org/10.1007/BF01025968
  3. Choi, D., J.-M. Maeng, G. Jeung, and W.-S. Cha, 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378
  4. DeMeyer, G., K. Audenaert, and M. Hofte. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517 https://doi.org/10.1023/A:1008741015912
  5. Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33: 173-197 https://doi.org/10.1146/annurev.py.33.090195.001133
  6. Duijff, B. J., V. Gianinazzi-Pearson, and P. Lemanceau. 1997. Involvement of the outer-membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens WCS417r. New Phytol. 135: 325-334 https://doi.org/10.1046/j.1469-8137.1997.00646.x
  7. Felix, G., J. D. Duran, S. Volko, and T. Boller. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276 https://doi.org/10.1046/j.1365-313X.1999.00265.x
  8. Gaur, D., L. Galbraith, and S. G. Wilkinson. 1998. Structural characterisation of a rhamnan and a fucorhamnan, both present in the lipopolysaccharide of Burkholderia vietnamiensis strain LMG 10926. Eur. J. Biochem. 258: 696-701 https://doi.org/10.1046/j.1432-1327.1998.2580696.x
  9. Goode, M. J. 1958. Physiological specialization in Colletotrichum lagenarium. Phytopathology 48: 79-83
  10. Guzzo, S. D., E. E. Bach, E. M. F. Martins, and E. B. C. Moraes. 1993. Crude exopolysaccharides (EPS) from Xanthomonas campestris pv. manihotis, Xanthomonas campestris pv. campestris, and commercial xanthan gum as inducers of protection in coffee plants against Hemileia vastatrix. J. Phytopathol. 139: 119-128 https://doi.org/10.1111/j.1439-0434.1993.tb01408.x
  11. Iavicoli, A., E. Boutet, A. Buchala, and J.-P. Meraux. 2004. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 16: 851-858 https://doi.org/10.1094/MPMI.2003.16.10.851
  12. Jefferson, R. A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405 https://doi.org/10.1007/BF02667740
  13. Ji, P., M. Wilson, H. L. Campbell, and J. W. Kloepper. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato, pp. 273-276. In A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino (eds.), Plant Growth-Promoting Rhizobacteria: Present Status and Future Prospects. Nakanishi Printing, Sapporo
  14. Kloepper, J. W., S. Tuzun, and J. Kuc. 1992. Proposed definitions related to induced disease resistance. Biocon. Sci. Tech. 2: 349-351 https://doi.org/10.1080/09583159209355251
  15. Kloepper, J. W., C.-M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  16. Lee, H. J., K. H. Park, J. H. Shim, R.-D. Park, Y. W. Kim, J. Y. Cho, et al. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  17. Leeman, M., P. J. A. Van, O. F. M. Den, M. Heinsbroek, P. A. H. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027 https://doi.org/10.1094/Phyto-85-1021
  18. Leigh, J. A. and D. L. Coplin. 1992. Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol. 46: 307-346 https://doi.org/10.1146/annurev.mi.46.100192.001515
  19. Maurhofer, M., C. Hase, P. Meuwly, and J. P. Métraux. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonising Pseudomonas fluorescens strain CHAO: Influence of gacA and of pyoverdine production. Phytopathology 84: 139-146 https://doi.org/10.1094/Phyto-84-139
  20. Mendrygal, K. E. and J. E. González. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 82: 599-606
  21. Meziane, H., I. Van der Sluis, L. C. Van Loon, M. Höfte, and P. A. H. M. Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185 https://doi.org/10.1111/j.1364-3703.2005.00276.x
  22. Nürnberger, T., F. Brunner, B. Kemmerling, and L. Piater. 2004. Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol. Rev. 198: 249-266 https://doi.org/10.1111/j.0105-2896.2004.0119.x
  23. Ongena, M., E. Jourdan, M. Schäfer, C. Kech, H. Budzikiewicz, A. Luxen, and P. Thonart. 2005. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant Microbe Interact. 18: 562-569 https://doi.org/10.1094/MPMI-18-0562
  24. Ortmann, I., U. Conrath, and B. M. Moerschbacher. 2006. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett. 580: 4491-4494 https://doi.org/10.1016/j.febslet.2006.07.025
  25. Park, K. S. and J. W. Kloepper. 2000. Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Contr. 18: 2-9 https://doi.org/10.1006/bcon.2000.0815
  26. Press, C. M., M. Wilson, S. Tuzun, and J. W. Kloepper. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant Microbe Interact. 10: 761- 768 https://doi.org/10.1094/MPMI.1997.10.6.761
  27. Reitz, M., K. Rudolph, I. Schroder, S. Hoffmann-Hergarten, J. Hallmann, and R A. Sikora. 2000. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66: 3515-3518 https://doi.org/10.1128/AEM.66.8.3515-3518.2000
  28. Ryu, C.-M., M. A. Farag, C.-H. Hu, M. S. Reddy, P. W. Paré, and J. W. Kloepper. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026 https://doi.org/10.1104/pp.103.026583
  29. Ryu, C.-M., J. F. Murphy, M. S. Reddy, and J. W. Kloepper. 2007. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promote plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 17: 280-286
  30. Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J. Microbiol. Biotechnol. 17: 1300-1307
  31. Stefani, E. and K. Rudolph. 1989. Induced resistance in bean leaves pretreated with extracellular polysaccharides from phytopathogenic bacteria. J. Phytopathol. 124: 189-199 https://doi.org/10.1111/j.1439-0434.1989.tb04914.x
  32. Ton, J., J. A. Van Pelt, L. C. Van Loon, and C. M. J. Pieterse. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15: 27-34 https://doi.org/10.1094/MPMI.2002.15.1.27
  33. Uknes, S., S. Dincher, L. Friedrich, D. Negrotto, S. Williams, H. Thompson-Taylor, S. Potter, E. Ward, and J. Ryals. 1993. Regulation of pathogenesis-related protein-la gene expression in tobacco. Plant Cell 5: 159-169 https://doi.org/10.1105/tpc.5.2.159
  34. van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  35. van Peer, R., G.. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734 https://doi.org/10.1094/Phyto-81-728
  36. Zehnder, G. W., C. Yao, J. F. Murphy, E. R. Sikora, J. W. Kloepper, D. J. Schuster, and J. E. Polston. 1999. Microbeinduced resistance against pathogens and herbivores: Evidence of effectiveness in agriculture, pp. 335-355. In A. A. Agrawal, et al. (eds.), Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture. APS Press, St. Paul, MN