Characterization of a Chromosomal Nickel Resistance Determinant from Klebsiella oxytoca CCUG 15788

  • Park, Jae-Sun (Institute of Global Environment and Department of Biology, Kyung Hee University) ;
  • Lee, Sung-Jae (Institute of Global Environment and Department of Biology, Kyung Hee University) ;
  • Rhie, Ho-Gun (Institute of Global Environment and Department of Biology, Kyung Hee University) ;
  • Lee, Ho-Sa (Institute of Global Environment and Department of Biology, Kyung Hee University)
  • Published : 2008.06.30

Abstract

Klebsiella oxytoca CCUG 15788 is resistant to $Ni^{2+}$ at a concentration of 10 mM and grows in an inducible manner when exposed to lower concentrations of $Ni^{2+}$. The complete genomic sequence of a 4.2-kb HindIII-digested fragment of this strain was determined from genomic DNA. It was shown to contain four nickel resistance genes (nirA, nirB, nirC, and nirD) encoding transporter and transmembrane proteins for nickel resistance. When the plasmid pKOHI4, encoding nirABCD, was transformed into Escherichia coli JM109, the cells were able to grow in Tris-buffered mineral medium containing 3 mM nickel. TnphoA'-1 insertion mutants in the four nickel genes nirA, nirB, nirC, and nirD showed nickel sensitivity. The nir genes were heterogeneously expressed in E. coli, suggesting functional roles of these genes in nickel resistance.

Keywords

References

  1. Dong, Q. and M. Mergeary. 1994. Czc/Cnr efflux: A threecomponent chemiosmotic antiport pathway with a 12- transmembrane-helix protein. Mol. Microbiol. 14: 185-187 https://doi.org/10.1111/j.1365-2958.1994.tb01278.x
  2. Grass, G., C. Grobe, and D. H. Nies. 2000. Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J. Bacteriol. 182: 1390-1398 https://doi.org/10.1128/JB.182.5.1390-1398.2000
  3. Grass, G., B. Fan, B. P. Rosen, K. Lemke, H. G. Schlegel, and C. Rensing. 2001. NreB from Achromobacter xylosoxydans 31A is a nickel-induced transporter conferring nickel resistance. J. Bacteriol. 183: 2803-2807 https://doi.org/10.1128/JB.183.9.2803-2807.2001
  4. Liesegang, H., K. Lemke, R. A. Sidiqui, and H. G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175: 767-778 https://doi.org/10.1128/jb.175.3.767-778.1993
  5. Park, J. E., E. Y. Kho, H. G. Schlegel, H. G. Rhie, and H. S. Lee. 2003. Conjugative plasmid mediated inducible nickel resistance in Hafnia alvei 5-5. Int. Microbiol. 6: 57-64
  6. Park, J. E., H. G. Schlegel, H. G. Rhie, and H. S. Lee. 2004. Nucleotide sequence and expression of the ncr nickel and cobalt resistance in Hafnia alvei 5-5. Int. Microbiol. 7: 27-34
  7. Rutz, W., B. Friedrich, and T. Eitinger. 1995. The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J. Bacteriol. 177: 1840-1843 https://doi.org/10.1128/jb.177.7.1840-1843.1995
  8. Sambrook, K., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  9. Schiott, T., C. von Wachenfeldt, and L. Hederstedt. 1997. Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J. Bacteriol. 179: 1962-1973 https://doi.org/10.1128/jb.179.6.1962-1973.1997
  10. Schmidt, T. and H. G. Schlegel. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxydans 31A. J. Bacteriol. 176: 7045-7054 https://doi.org/10.1128/jb.176.22.7045-7054.1994
  11. Schmidt, T., R. D. Stoppel, and H. G. Schlegel. 1991. Highlevel nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KT02. Appl. Environ. Microbiol. 57: 3301-3309
  12. Sensfuss, C. and H. G. Schlegel. 1988. Plasmid pMOL28- encoded resistance to nickel is due to specific efflux. FEMS Microbiol. Lett. 55: 295-298 https://doi.org/10.1111/j.1574-6968.1988.tb02817.x
  13. Siddiqu, R. A. and H. G. Schlegel. 1987. Plasmid pMOL28- mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34. FEMS Microbiol. Lett. 43: 9-13 https://doi.org/10.1111/j.1574-6968.1987.tb02089.x
  14. Stoppel, R. D., M. Meyer, and H. G. Schlegel. 1995. The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: Conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. BioMetals 8: 70-79
  15. Stoppel, R. D., M. Meyer, and H. G. Schlegel. 1995. The nickel resistance bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl. Environ. Microbiol. 61: 2276-2285
  16. Tabor, S. and C. C. Richardson. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific gene. Proc. Natl. Acad. Sci. USA 82: 1074-1078
  17. Tian, J., N. Wu, J. Li, Y. Liu, J. Guo, B. Yao, and Y. Fan. 2007. Nickel-resistant determinant from Leptospirillum ferriphilum. Appl. Environ. Microbiol. 73: 2364-2368 https://doi.org/10.1128/AEM.00207-07
  18. Wilmes-Resenbeg, M. R. and B. L. Wanner. 1992. TnphoA and TnphoA elements for making and switching fusions for study of transcription, translation, and cell surface localization. J. Bacteriol. 174: 4558-4575 https://doi.org/10.1128/jb.174.14.4558-4575.1992