Molecular Characterization of Burkholderia Strains Isolated from Rice Cultivars (Oryza sativa L.) for Species Identification and Phylogenetic Grouping

  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kwon, Soon-Wo (Korean Agricultural Cultural Collection (KACC), Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Song, Myung-Hee (Korean Agricultural Cultural Collection (KACC), Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Published : 2008.06.30

Abstract

The genus Burkholderia consists of extremely versatile bacteria that occupy diverse niches and are commonly encountered in the rhizosphere of crop plants. In this study, we characterized three plant growth promoting strains assigned as Burkholderia sp. using biochemical and molecular characterization. The Burkholderia spp. strains CBMB40, CBPB-HIM, and CBPB-HOD were characterized using biochemical tests, BIOLOG carbon substrate utilization, fatty acid methyl ester analysis, analysis of recA gene sequences, and DNA-DNA hybridization. The results from these studies indicated that the strains CBMB40, CBPB-HIM, and CBPB-HOD can be assigned under Burkholderia vietnamiensis, Burkholderia ubonensis, and Burkholderia pyrrocinia, respectively.

Keywords

References

  1. Compant, S., B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E. A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693 https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  2. Daubaras, D. L., C. E. Danganan, A. Hubner, R. W. Ye, W. Hendrickson, and A. M. Chakrabarty. 1996. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: Evolutionary insight. Gene 179: 1-8 https://doi.org/10.1016/S0378-1119(96)00326-5
  3. Estrada-de los Santos, P., R. Bustillos-Cristales, and J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798 https://doi.org/10.1128/AEM.67.6.2790-2798.2001
  4. Estrada, P., P. Mavingui, B. Cournoyer, F. Fontaine, J. Balandreau, and J. Caballero-Mellado. 2002. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can. J. Microbiol. 48: 285-294 https://doi.org/10.1139/w02-023
  5. Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kerster, T. Heulin, and M. P. Fernandez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45: 274-289 https://doi.org/10.1099/00207713-45-2-274
  6. He, X. S. and C. Fuqua. 2006. Rhizosphere communication: Quorum sensing by the rhizobia. J. Microbiol. Biotechnol. 16: 1661-1677
  7. Higgins, D. G., A. J. Bleasby, and R. Fuchs. 1992. CLUSTAL V: Improved software for multiple sequence alignment. CABIOS 8: 189-191
  8. Jung, S. J., K. H. Jang, E. H. Sihn, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721
  9. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  10. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  11. Laurent, P., L. Buchon, J. F. Guespin-Michel, and N. Orange. 2000. Production of pectate lyases and cellulases by Chryseomonas luteola strain MFCL0 depends on the growth temperature and the nature of the culture medium: Evidence for two critical temperatures. Appl. Environ. Microbiol. 66: 1538-1543 https://doi.org/10.1128/AEM.66.4.1538-1543.2000
  12. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859- 865
  13. Lee, C. H., M. W. Kim, H. S. Kim, J. H. Ahn, Y. S. Yi, K. R. Kang, Y. D. Yoon, G. J. Choi, K. Y. Cho, and Y. H. Lim. 2006. An antifungal property of Burkholderia ambifaria against phytopathogenic fungi. J. Microbiol. Biotechnol. 16: 465-468
  14. Li, W., D. P. Roberts, S. L. F. Meyer, S. Lohrke, R. D. Lumdsen, and K. P. Hebbar. 2002. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21: 29-135
  15. Mahenthiralingam, E., A. Baldwin, and P. Vandamme. 2002. Burkholderia cepacia complex infection in patients with cystic fibrosis. J. Med. Microbiol. 51: 533-538 https://doi.org/10.1099/0022-1317-51-7-533
  16. Payne, G. W., P. Vandamme, S. H. Morgan, J. J. LiPuma, T. Coenye, A. J. Weightman, T. H. Jones, and E. Mahenthiralingam. 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71: 3917-3927 https://doi.org/10.1128/AEM.71.7.3917-3927.2005
  17. Payne, G. W., A. Ramette, H. L. Rose, A. J. Weightman, T. H. Jones, J. M. Tiedje, and E. Mahenthiralingam. 2006. Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol. Lett. 259: 126-132 https://doi.org/10.1111/j.1574-6968.2006.00257.x
  18. Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2006. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp. pekinensis and screening of potential plant growth promoting bacteria. Plant Soil 286: 167-180 https://doi.org/10.1007/s11104-006-9035-1
  19. Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Quorumsensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res. Microbiol. 158: 287-294 https://doi.org/10.1016/j.resmic.2006.11.013
  20. Reis, V. M., P. Estrada-de los Santos, S. Tenorio-Salgado, J. Vogel, M. Stoffels, S. Guyon, P. Mavingui, V. L. D. Baldani, M. Schmid, J. I. Baldani, J. Balandreau, A. Hartmann, and J. Caballero-Mellado. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Bacteriol. 54: 2155-2162 https://doi.org/10.1099/ijs.0.02879-0
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  22. Schwyn, B. and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Chem. 160: 47-56
  23. Seldin, L. and D. Dubnau. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol. 35: 151-154 https://doi.org/10.1099/00207713-35-2-151
  24. Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17: 1300-1307
  25. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  26. Vandamme, P., B. Holmes, M. Vancanneyt, T. Coenye, B. Hoste, R. Coopman, H. Revets, S. Lauwers, M. Gillis, K. Kersters, and J. R. Govan. 1997. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol. 47: 1188-1200 https://doi.org/10.1099/00207713-47-4-1188
  27. Vial, L., M. C. Groleau, V. Dekimpe, and E. Déziel. 2007. Burkholderia diversity and versatility: An inventory of the extracellular products. J. Microbiol. Biotechnol. 17: 1407-1429