DOI QR코드

DOI QR Code

촉매 화학 기상 증착법을 사용하여 실리콘 기판위에 수직 정렬된 직경이 얇은 다중층 탄소나노튜브의 합성과 그들의 전계방출 특성

Synthesis of vertically aligned thin multi-walled carbon nanotubes on silicon substrates using catalytic chemical vapor deposition and their field emission properties

  • 정승일 (한양대학교 나노반도체공학과) ;
  • 최상규 (한양대학교 나노반도체공학과) ;
  • 이승백 (한양대학교 나노반도체공학과)
  • Jung, S.I. (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Choi, S.K. (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Lee, S.B. (Department of Nanoscale Semiconductor Engineering, Hanyang University)
  • 발행 : 2008.07.30

초록

최적화된 량의 황화수소 첨가 가스를 이용하여 실리콘 기판위에 증착된 Fe/Al 박막위에 촉매 화학 기상 증착법을 사용하여 직경이 얇은 다중층 탄소나노튜브가 수직 정렬되어 합성되었다. 주사전자현미경 관측 이미지에서 합성된 탄소나노튜브는 상대적으로 일정한 길이를 가지고 기판에 수직으로 정렬되었다. 투과전자현미경 관측에서 합성된 탄소나노튜브는 10nm 이내의 작은 외경을 가졌고 촉매가 거의 없었다. 평균 튜브의 벽 수는 약 다섯 개이다. 수직 정렬된 직경이 얇은 다중층 탄소나노튜브의 성장 메카니즘이 제시되었다. 수직 정렬된 직경이 얇은 다중층 탄소나노튜브는 $0.1\;{\mu}A/cm^2$의 전류밀도에서 약 $1.1\;V/{\mu}m$ 낮은 턴-온 전계를 나타내었고 $2.7\;V/{\mu}m$의 전계에서 약 $2.5\;mA/cm^2$의 전류밀도를 얻었다. 게다가, 수직 정렬된 직경이 얇은 다중층 탄소나노튜브는 약 $1\;mA/cm^2$의 전류밀도에서 20시간동안 전류밀도 저하 없이 좋은 전계 방출 안정성을 보여주었다.

We have succeeded in synthesizing vertically aligned thin multi-walled carbon nanotubes (VA thin-MWCNTs) by a catalytic chemical vapor deposition (CCVD) method onto Fe/Al thin film deposited on a Si wafers using an optimum amount of hydrogen sulfide ($H_2S$) additive. Scanning electron microscope (SEM) images revealed that the as-synthesized CNT arrays were vertically well-oriented perpendicular to the substrate with relatively uniform length. Transmission electron microscope (TEM) observations indicated that the as-grown CNTs were nearly catalyst-free thin-MWCNTs with small outer diameters of less than 10nm. The average wall number is about 5. We suggested a possible growth mechanism of the VA thin-MWCNT arrays. The VA thin-MWCNTs showed a low turn-on electric field of about $1.1\;V/{\mu}m$ at a current density of $0.1\;{\mu}A/cm^2$ and a high emission current density about $2.5\;mA/cm^2$ at a bias field of $2.7\;V/{\mu}m$. Moreover, the VA thin-MWCNTs presented better field emission stability without degradation over 20 hours (h) at the emission current density of about $1\;mA/cm^2$.

키워드

참고문헌

  1. A. G. Rinzler, J. H. Hanfner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Science 269, 1550 (1995) https://doi.org/10.1126/science.269.5230.1550
  2. Walt A. de Heer, A. Châtelain and D. Ugarte, Science 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  3. C. Qian, H. Qi, B. Gao, Y. Cheng, Q. Qiu, L. Qin, O. Zhou and J. Liu, J. Nanosci and Nanotec. 6, 1 (2006)
  4. H. J. Jeong, H. K. Choi, G. Y. Kim, Y. I. Song, Y. Tong, S. C. Lim and Y. H. Lee, Carbon 44, 2689 (2006) https://doi.org/10.1016/j.carbon.2006.04.009
  5. M. S. Dresselhaus, G. Dresselhaus and P. Avouris, eds., Carbon Nanotubes: Syntheis, Structure, Properties, and Applications, Springer-Verlag, Heidelberg (2000), Vol.80
  6. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  7. A. Modi, N. Koratkar, E. Lass, B. Wei and P. M. Ajayan, Nature 424, 171 (2003) https://doi.org/10.1038/nature01777
  8. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura. S. Iijima, Science 306, 1362 (2004) https://doi.org/10.1126/science.1104962
  9. H. Nishino, S. Yasuda, T. Namai, D. N. Futaba, T. Yamada, M. Yumura, S. Iijima and K. Hata, J. Phys. Chem. C 111, 17961 (2007) https://doi.org/10.1021/jp0723719
  10. T. Hiraoka, T. Yamada. K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura and S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006) https://doi.org/10.1021/ja0643772
  11. T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura and S. Iijima, Nat. Nanotechnol. 1, 131 (2006) https://doi.org/10.1038/nnano.2006.95
  12. K. S. Kim, J. H. Ryu, C. S. Lee, H. E. Lim, J. S. Ahn, J. Jang and K. C. Park, J. Korean Vac. Soc. 17, 90 (2008) https://doi.org/10.5757/JKVS.2008.17.2.090
  13. E. C. Choi, J. T. Kim, Y. S. Park, W. S. Choi and B. Hong, Korean Vac. Soc. 16, 187 (2007) https://doi.org/10.5757/JKVS.2007.16.3.187
  14. M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo and G. A. J. Amaratunga, Appl. Phys. Lett. 79, 2079 (2001) https://doi.org/10.1063/1.1406557
  15. E. Minoux, O. Groening, K. B. K. Teo, S. H. Dalal, L. Gangloff, J.-P. Schnell, L. Hudanski, L. Y. Y. Bu, P. Vincent, P. Legagneux, G. A. J. Amaratunga and W. I. Milne, Nano. Lett. 5, 2135 (2005) https://doi.org/10.1021/nl051397d
  16. R. G. Forbes, C. J. Edgcombe and U. Valdre, Ultramicroscopy 95, 57 (2003) https://doi.org/10.1016/S0304-3991(02)00297-8
  17. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, Appl. Phys. Lett. 72, 3282 (1998) https://doi.org/10.1063/1.121624
  18. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki and M. Yumura, Appl. Phys. Lett. 77, 79 (2000) https://doi.org/10.1063/1.126883
  19. L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu and S. Xie, Chem, Phys. Lett. 359, 63 (2002) https://doi.org/10.1016/S0009-2614(02)00600-0
  20. E. H. Hong, K.-H. Lee, S. H. Oh and C.-G. Park, Adv. Mater. 14, 676 (2002) https://doi.org/10.1002/1521-4095(20020503)14:9<676::AID-ADMA676>3.0.CO;2-3
  21. Y. Saito, T. Nakahira and S. Uemura, J. Phys. Chem. B 107, 931 (2003) https://doi.org/10.1021/jp021367o
  22. J. Wei, L. Ci, B. Jiang, Y. Li, X. Zhang, H. Zhu, C. Xu and D. Wu, J. Mater. Chem. 13, 1340 (2003) https://doi.org/10.1039/b300484h
  23. L. Song, L. Ci, L. Lv, Z. Zhou, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, X. Zhao, Z. Zhang, X. Dou, W. Zhou, G. Wang, C. Wang and S. Xie, Adv. Mater. 16, 1529 (2004) https://doi.org/10.1002/adma.200306393
  24. A. J. Hart and A. H. Slocum, J. Phys. Chem. B 110, 8250 (2006) https://doi.org/10.1021/jp055498b
  25. L. Ci, S. M. Manikoth, X. Li, R. Vajtai and P. M. Ajayan, Adv. Mater. 19, 3300 (2007) https://doi.org/10.1002/adma.200602974
  26. T. Inoue, I.GunjishimaandA.Okamoto, Carbon 45, 2164 (2007) https://doi.org/10.1016/j.carbon.2007.06.056
  27. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, J. Phys. Chem. C 112, 4524 (2008) https://doi.org/10.1021/jp710338d
  28. G. G. Tibbetts, C. A. Bernardo, D. W. Gorkiewicz and R. L. Alig, Carbon 32, 569 (1994) https://doi.org/10.1016/0008-6223(94)90074-4
  29. M. S. Kim, N. M. Rodriguez and R. T. K. Baker, J. Catalysis 143, 449 (1993) https://doi.org/10.1006/jcat.1993.1289
  30. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928) https://doi.org/10.1098/rspa.1928.0091
  31. R. G. Forbes, Solid-State Electron. 45, 779 (2001) https://doi.org/10.1016/S0038-1101(00)00208-2
  32. J.-M. Bonard, J.-P. Salvetat, T. Stöckli, W. A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73, 918 (1998). https://doi.org/10.1063/1.122037
  33. M. Sveningsson, R.-E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Campbell and F. Rohmund, Appl, Phys. A. 73, 409 (2001) https://doi.org/10.1007/s003390100923
  34. J. S. Moon, P. S. Alegaonkar, J. H. Han, T. Y. Lee, J. B. Yoo and J. M. Kim, J. Appl. Phys. 100, 104303 (2006) https://doi.org/10.1063/1.2384795
  35. R. Seelaboyina, J. Huang and W. B. Choi, Appl. Phys. Lett. 88, 194104 (2006) https://doi.org/10.1063/1.2203218
  36. P. G. Collins and A. Zettl, Appl. Phys. Lett, 69, 1969 (1996) https://doi.org/10.1063/1.117638
  37. X. Xu and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999) https://doi.org/10.1063/1.123894
  38. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000) https://doi.org/10.1063/1.125758
  39. S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, J. Y. Huang, D. Z. Wang and Z. F. Ren, Appl. Phys. Lett. 84, 413 (2004) https://doi.org/10.1063/1.1642272
  40. S. C. Lim, Y. C. Choi, H. J. Jeong, Y. M. Shin, K. H. An, D. J. Bae, Y. H. Lee, N. S. Lee and J. M. Kim, Adv. Mater. 13, 1563 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1563::AID-ADMA1563>3.0.CO;2-H
  41. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard and K. Kern, Appl. Phys. Lett. 76, 2071 (2000) https://doi.org/10.1063/1.126258

피인용 문헌

  1. Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization vol.20, pp.2, 2011, https://doi.org/10.5757/JKVS.2011.20.2.155
  2. Control the Length of Carbon Nanotube Array by Using Oxygen Plasma Etching Process vol.18, pp.6, 2009, https://doi.org/10.5757/JKVS.2009.18.6.488