DOI QR코드

DOI QR Code

Improved light extraction efficiency of vertical AlGaInP-based LEDs by n-AlGaInP surface roughening

n-표면 거칠기가 형성된 AlGaInP 수직형 적색 발광다이오드의 광추출효율 증가

  • 서재원 (국립순천대학교 재료금속공학과) ;
  • 오화섭 (국립순천대학교 재료금속공학과) ;
  • 송현돈 (에피플러스(주) 소자공정팀) ;
  • 박경욱 (에피플러스(주) 소자공정팀) ;
  • 유성욱 (에피플러스(주) 소자공정팀) ;
  • 박영호 (에피플러스(주) 소자공정팀) ;
  • 박해성 (에피플러스(주) 소자공정팀) ;
  • 곽준섭 (국립순천대학교 재료금속공학과)
  • Published : 2008.07.30

Abstract

In order to increase extraction efficiency of AlGaInP-based vertical RED LEDs, chemical wet etching technique was produced by using a roughened surface with triangle-like morphology. A commonly used $H_3PO_4$-based solution was applied for chemical wet etching. The light extraction of AlGaInP LED was related to the n-side roughed surface morphology. The morphology of roughed surface is analyzed by the atomic force microscope (AFM). As a result, the roughed surface AlGaInP LED has a root-mean-square (RMS) roughness of 44 nm. The brightness shows 41% increase after roughening n-side surface, as compared to the ordinary flat surface LED.

AlGaInP 기반 수직형 적색 LED (Light Emitting Diode)의 광추출효율을 증가시키기 위하여 화학적 etching 기술을 이용하여 n-AlGaInP 표면에 삼각꼴 모양의 거칠기를 형성하였다. Etching은 $H_3PO_4$계의 용액을 이용하여 화학적 etching을 진행 하였다. AlGaInP etching은 광추출효율의 증가와 밀접한 관련을 갖고 있으며 AFM (Atomic Force Microscope)을 이용하여 AlGaInP 표면을 분석하여 약 44 nm의 RMS (root-mean-square) 거칠기가 형성됨을 알 수 있었다. 광추출효율은 기존 수직형 적색 LED보다 거칠기가 형성된 수직형 적색 LED에서 41%의 높은 발광 효율을 보임으로써 고효율 수직형 적색 LED의 가능성을 보였다.

Keywords

References

  1. S. J. Lee, J. O. Kim, C. S. Kim, S. K. Noh, and K. Y. Lim, J. Kor. Vac. Soc. 16, 22 (2007)
  2. Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C. W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, Jpn. J. Appl. Phys. 45, 643 (2006) https://doi.org/10.1143/JJAP.45.643
  3. K. W. Jung, K. W. Kim, S. P. Ryu, N. K. Cho, S. J. Park, J. D. Song, W. J. Choi. J. Lee, and H. S. Yang, J. Kor. Vac. Soc. 16, 371 (2007) https://doi.org/10.5757/JKVS.2007.16.5.371
  4. G. B. Stringfellow and M. G. Craford, High Brightness Light Emitting Diodes (Academic Press, Boston, (1997)
  5. W. C. Peng and Y. S. Wu, Appl. Phys. Lett. 84, 1841 (2004) https://doi.org/10.1063/1.1682696
  6. S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, J. Appl. Phys. 87, 2052 (2000) https://doi.org/10.1063/1.372135
  7. H. Sugawara, K. Itaya, and G. Hatakoshi, J. Appl. Phys. 74, 3189 (1993) https://doi.org/10.1063/1.354589
  8. R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, Appl. Phys. Lett. 82, 4011 (2004)
  9. 3F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, Appl. Phys. Lett. 64, 2839 (1994) https://doi.org/10.1063/1.111442
  10. G. E. Hofer, D. A. Vanderwater, D. C. DeFevere, F. A. Kish, M. D. Camras, F. M. Steranka, and I.-H. Tan, Appl. Phys. Lett. 69, 803 (1996) https://doi.org/10.1063/1.117897
  11. I. H. Tan, D. A. Vanderwater, J.-W. Huang, G. E. Hofler, F. A. Kish, E. I. Chen, and T. D. Ostentowski, J. Electron. Mater. 29, 188 (2000) https://doi.org/10.1007/s11664-000-0140-2
  12. F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, Appl. Phys. Lett. 67, 2060 (1995) https://doi.org/10.1063/1.115078
  13. R. H. Horng, D. S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, Appl. Phys. Lett. 75, 154 (1999) https://doi.org/10.1063/1.124303
  14. Th. Gessmann and E. F. Schubert, J. Appl. Phys. 95, 2203 (2004) https://doi.org/10.1063/1.1643786
  15. Y. J. Lee, T. C. Lua, H. C. Kuo, S. C. Wang, T. C. Hsub, M. H. Hsieh, M. J. Jou, and B. J. Lee, Mater. Sci. Eng. B. 138, 157 (2007) https://doi.org/10.1016/j.mseb.2006.11.015
  16. Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. DenBaars, S. Nakamura, and E. L. Hu, Jpn. J. Appl. Phys. 43, 637 (2004) https://doi.org/10.1143/JJAP.43.637