초록
OLAP의 다차원 데이타 모델인 데이타 큐브는 많은 다차원 데이타 분석에 성공적으로 적용되었으며, 데이타 스트림 분석에도 적용하려는 많은 연구가 진행되고 있다. 데이타 스트림은 실시간에 지속적으로 방대하게 생성되며, 데이타의 분포적 특성이 빠르게 변한다는 특징을 가지며, 제한된 메모리 및 처리능력 때문에 한번만 검사하여 처리하는 것을 기본으로 한다. 때문에 데이타 스트림을 메모리에 모두 저장하는 것은 불가능하다. 또한 사용자는 모든 속성 값에 대하여 관심을 두기보다는 일정 지지율 이상을 가진 속성 값에 더욱 관심을 가지게 된다. 본 논문에서는 이러한 데이타 스트림 환경에서 데이타 큐브를 효과적으로 적용하기 위한 동적 데이타 큐브를 제안한다. 동적 데이타 큐브는 속성 값의 지지율에 따라 사용자 관심 영역을 지정하고, 속성 값을 동적으로 그룹화하여 관리한다. 이를 통해 메모리 및 처리시간을 절약하게 된다. 또한 동적으로 지지율이 높은 속성에 대한 분석 상세도를 높여주기 때문에 사용자의 관심영역을 효과적으로 보여준다. 마지막으로 실험을 통하여 제한된 메모리에서 동적 데이타 큐브가 효율적으로 동작함을 검증하였다.
Data cube, which is multi-dimensional data model, have been successfully applied in many cases of multi-dimensional data analysis, and is still being researched to be applied in data stream analysis. Data stream is being generated in real-time, incessant, immense, and volatile manner. The distribution characteristics of data arc changing rapidly due to those characteristics, so the primary rule of handling data stream is to check once and dispose it. For those characteristics, users are more interested in high support attribute values observed rather than the entire attribute values over data streams. This paper propose dynamic data cube for applying data cube to data stream environment. Dynamic data cube specify user's interested area by the support ratio of attribute value, and dynamically manage the attribute values by grouping each other. By doing this it reduce the memory usage and process time. And it can efficiently shows or emphasize user's interested area by increasing the granularity for attributes that have higher support. We perform experiments to verify how efficiently dynamic data cube works in limited memory usage.