DOI QR코드

DOI QR Code

습윤 모래에서 인장강도의 예측 (II) : 검증

Prediction of Tensile Strength of Wet Sand (II) : Validation

  • 김태형 (한국해양대학교 건설환경공학부)
  • Kim, Tae-Hyung (Division of Civil and Environmental Engrg., Korea Maritime Univ.)
  • 발행 : 2008.06.30

초록

낮은 응력 상태에서 모래의 인장강도는 포화도 또는 흡입력에 따라 증가하다 최대값이 이른 후 감소한다. 최대인장 강도는 어느 포화도에서든 발생될 수 있다. 선행 연구에서는 이와 같은 습윤 모래의 인장강도를 정확히 표현한 이론이 제시되었다. 본 연구에서 세 가지 종류의 모래(워싱턴 주 시애틀의 검정 Esperance모래, 오스트리일리아 서부 Perth 해변 모래, Ottawa 모래)에 대해 실시된 일축인장실험, 함수특성실험, 직접전단실험 결과를 이용하여 제안된 이론을 검증하였다. 제안된 닫힌 형식의 식으로 표현된 이론은 이들 모래들로부터 얻어진 실험결과와 비교 시 전체 포화도 영역에서 인장강도 변화양상, 인장강도 크기, 최대인장강도, 최대인장강도가 발생할 때의 해당 포화도 등을 잘 예측하는 것으로 나타났다.

At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.

키워드

참고문헌

  1. Al-Hussaini, M.M. and Townsend F.C. (1974), "Tensile testing of soils: A literature review", Miscellaneous Paper S-74-10U.S. Army Waterways Experiment Station, Vicksburg, MS
  2. Alshibli, K. A. and Sture, S. (1999), "Sand Shear Band Thickness Measurements by Digital Imaging Techniques", Journal of Computing in Civil Engineering, Vol.13, No.2, pp.103-109 https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(103)
  3. ASTM D 3080-72 (1979), "Direct Shear Test of Soils under Consolidated Drained Conditions", pp.496-500
  4. Bishop, A.W. and Garga, V.K. (1969), "Drained tests on London clay", Geotechnique, Vol.19, No.2, pp.309-312 https://doi.org/10.1680/geot.1969.19.2.309
  5. Kim, T-H. (2001), Moisture-induced tensile strength and cohesion in sand, PhD Dissertation, Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO
  6. Kim, T-H. and Hwang, C. (2003), "Modeling of tensile strength on moist granular earth material at low water content", Engineering Geology, Vol.69, pp.233-244 https://doi.org/10.1016/S0013-7952(02)00284-3
  7. Likos, W.J., Wayllace, A., Lu, N., and Godt, J. (2007), "Modified direct shear apparatus for suction-controlled testing at low stress levels", Geotechnical Testing Journal. Submitted
  8. Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp.131-142 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  9. Lu, N., Wu, B., and Tan, C.P. (2005), "A tensile strength apparatus for cohesionless soils", Proceedings of Experts 2005, A. Tarantino et al. (eds.), Balkema
  10. Lu, N., Wu, B., and Tan, C.P. (2007), "Tensile strength characteristics of unsaturated sands", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.2, pp.144-154
  11. Perkins, S. W. (1991). Modeling of regolith structure interaction in extraterrestrial constructed facilities, Ph.D. thesis, University of Colorado at Boulder
  12. Znidarcic, D., Illangasekare, T. and Manna, M. (1991), Laboratory testing and parameter estimation for two-phase flow problems. ASCE Geotechnical Special Publications 27, pp.1089-1099