An Application of Time Discontinuous Finite Element Method for Heat Conduction Problems

열전도 방정식의 시간 불연속 유한요소법 적용

  • Kim, Chi-Kyung (Department of Safety Engineering, University of Incheon)
  • 김치경 (인천대학교 안전공학과)
  • Published : 2008.06.30

Abstract

A finite element method which is discontinuous in time is developed for the solution of the classical parabolic model of heat conduction problems. The approximations are continuous with respect to the space variables for each fixed time, but they admit discontinuities with respect to the time variable at each time step. The method is superior to other well-known approaches to these problems in that it allows a wider range of moving boundary value problems to be dealt with, such as are encountered in complex engineering operations like ground freezing. The method is applied to one-dimensional and two-dimensional heat conduction problems in this paper, although it could be extended to more higher dimensional problems. Several example problems are discussed and illustrated, and comparisons are made with analytical approaches where these can also be used.

시간에 불연속성인 유한요소법이 열전도 방정식에 적용하였다. 근사값은 고정된 시간에 공간변수에는 연속이며 그러나 각 시간 구간에서는 시간변수에 불연속을 허용하였다. 이 유한요소법은 지금까지 많이 알려진 재래식 유한요소해석에 보다 해의 수렴속도가 빠르고 해를 쉽게 얻을 수 있으며 지반이 동결된 동상지반과 같이 복잡한 공학문제와 같은 동적 경계치 문제에 쉽게 접근할 수 있었다. 다차원 문제에도 적용이 가능하며 본 연구에서는 일차원, 이차원 열전도 문제에 적용하였다. 결과 치를 해석해와 비교 검토하였다.

Keywords

References

  1. Wilson, R. L. and Nickell, R. F., 'Application of the finite element method to heat conduction analysis', Nuclear Engineering and Design, Vol. 4, pp. 276-286, 1966 https://doi.org/10.1016/0029-5493(66)90051-3
  2. Duhamel, P., 'Application of a new finite integral transform method to the wave model of conduction', International Journal of Heat and Mass Transfer, Vol. 47, pp. 573-588, 2004 https://doi.org/10.1016/S0017-9310(03)00385-5
  3. Lewis, R.W. et al., 'A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media', International Journal for Numerical Methods in Engineering, Vol. 57, pp. 1775-1800, 2003 https://doi.org/10.1002/nme.741
  4. Eriksson, K., Johnson, C. and Thomee, V., 'Time discretization of parabolic problems by the discontinuous Galerkin Method', Mathematical Modelling, Vol. 19, pp. 611-643, 1985
  5. Jamet, P., 'Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain', SIAM Journal on Numerical Analysis, Vol. 16, pp. 912-928, 1978
  6. Li, X. D. and Wiberg, N. E., 'Structural dynamic analysis by a time-discontinuous Galerkin finite element method', International Journal for Numerical Methods in Engineering, Vol. 39, pp. 2131-2152, 1966 https://doi.org/10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z
  7. Kim, C.K., 'Discontinuous Time-Space Galerkin Finite Element Discretization Technique for the Analysis of Two-Dimensional Heat Conduction', JSME International Journal, Vol. 46, pp. 103-108, 2003 https://doi.org/10.1299/jsmea.46.103
  8. Andrews, L.C., 'Elementary partial differential equations with boundary value problems', Academic Press, Inc., 1986
  9. Bruch, J. C. and Zyvoloski, G., 'A finite element weighted residual solution to one-dimensional field problems', International Journal for Numerical Methods in Engineering, Vol. 8, pp. 481-494, 1974 https://doi.org/10.1002/nme.1620080304