잿빛곰팡이균(Botrytis cinerea)에 대한 N-phenylbenzenesulfonamide 유도체들의 살균활성에 관한 CoMFA 분석

CoMFA Analyses on the Fungicidal Activity with N-phenylbenzensulfonamide Analogues against Gray Mold (Botrytis cinerea)

  • 황태연 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 강규영 (경상대학교 농업생명과학대학 환경생명화학) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Hwang, Tae-Yeon (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Kang, Kyu-Young (Division of Applied Life Science, Gyeongsang National University) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 발행 : 2008.06.30

초록

잿빛곰팡이균(Botrytis cinerea)에 대한 N-phenylbenzenesulfonamides 유도체(1-45)들의 살균활성에 관한 비교 분자장 분석(CoMFA)을 정량적으로 검토하였다. 통계적으로 CoMFA 모델의 예측성과 상관성이 비교분자 유사성 지수분석(CoMSIA) 모델보다 월등히 좋았다. 최적화 된 CoMFA I 모델의 통계값은 예측성이 $r^2_{cv.}(or\;q^2)=0.457$ 그리고 상관성이 $r^2_{ncv.}=0.959$이었고 살균활성은 기질 분자들의 입체장(51.9%)과 정전기장(35.6%)에 의존적이었다. 또한 progressive scrambling 분석으로 얻어진 섭동에 대한 감도($d_q^{2'}/dr^2_{yy'}=0.898$)와 예측성($q^2=0.346$ 및 SDEP=0.614)에 의하여 최적의 CoMFA I 모델은 우연 상관성에 의존적이지 않음을 알았다. 그러므로 CoMFA I 모델의 등고도 분석 결과로부터, N-phenyl 고리상 $R_3$$R_4$-치환기는 입체적으로 크고 $R_1$-치환기로서 S-phenyl 고리상 para-치환기는 입체적으로 작은 치환체가 살균활성에 기여 할 것으로 기대되었으며 최적화 된 CoMFA I 모델은 잿빛곰팡이균에 대한 살균활성을 예측하는데 유용하게 활용될 수 있을 것이다.

The comparative molecular field analysis (CoMFA) for the fungicidal activity with N-phenylbenzenesulfonamide analogues (1-45) against gray mold (Botriyts cinerea) were studied quantitatively. The statistical values of CoMFA models had much better predictability and fitness than those of comparative molecular similarity indices analysis (CoMSIA) models. The statistical values of the optimized CoMFA I model were predictablity, $r^2_{cv.}(or\;q^2)=0.457$ and correlation coefficient, $r^2_{ncv.}=0.959$, and their fungicidal activity was dependent on the steric field (52%) and electrostatic field (35.6%) of the substrate molecules. And also, it was found that the optimized CoMFA I model with the sensitivity to perturbation ($d_q^{2'}/dr^2_{yy'}=0.898$) and prediction ($q^2=0.346$ & SDEP=0.614) produced by a progressive scrambling analysis was not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMFA I model, it is expected that the $R_3$ and $R_4$-substituents on the N-phenyl ring as steric favor group and para-substituents ($R_1$) on the S-phenyl ring as steric disfavor group will contribute to the fungicidal activity. Therefore, the optimized CoMFA I model should be applicable to the prediction of the fungicidal activities against gray mold.

키워드

참고문헌

  1. Ashek, A. and S. J. Cho (2005) A combined approach of docking and 3D QSAR study of b-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorganic & Medicinal Chemistry. 14:1474-1482 https://doi.org/10.1016/j.bmc.2005.10.001
  2. Bi, Y. M., B. P. A., Cammue, P. H., Goodwin, S. KrishnaRaj and P. K. Saxena (1999) Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep. 18:835-840 https://doi.org/10.1007/s002990050670
  3. Clark, R. D. and Fox, P. C. (2004) Statistical variation in progressive scrambling. J. Computer-Aided Molecular Design. 18:563-576 https://doi.org/10.1007/s10822-004-4077-z
  4. Cotoras, M., Folch, C. and Mendoza, L. (2004) Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3-hydroxy-kaurenoic acid. J. Agric. Food Chem. 52:2821-2826 https://doi.org/10.1021/jf030672j
  5. Cramer, R. D. III., J. D. Bunce and D. E. Patterson (1988) Cross-validation, Bootstrappiong and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. Act. Relat. 7:18-25 https://doi.org/10.1002/qsar.19880070105
  6. Cramer, R. D. III., S. A. Depriest, D. E. Patterson and P. Hecht (1993) The Developing Practice of Comparative Molecular Field Analysis. In 3D-QSAR in Drug Design: Theory, Methods and Applications. (Ed. Kubiny, H.) pp. 443-485. ESCOM, Leiden, Germany
  7. Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227 https://doi.org/10.1146/annurev.phyto.43.040204.135923
  8. Herlander, A., L. N. Teresa and M. T. Rui (2008) The Necrotroph Botrytis cinerea Induces a Non-Host Type II Resistance Mechanism in Pinus pinaster Suspension-Cultured Cells. Plant Cell Physiol. 49:386-395 https://doi.org/10.1093/pcp/pcn015
  9. Jang, S. C., K. Y. Kang and N. D. Sung (2007) CoMFA and CoMSIA analysis on the fungicidal activity against Damping-off (Pythium ultimum) with N-phenylbenzene- sulfonamide analogues. Kor. J. Pesticide Sci. 11:8-17
  10. Juan, A. A. S. and S. J. Cho (2007) 3D-QSAR study of microsomal prostaglandin E2 synthase (mPGES-1) inhibitors. J. Mol. Model. 13:601-610 https://doi.org/10.1007/s00894-007-0172-0
  11. Kang, J. G., D. H. Yang, L. N. Ten, K. H. Park and K. Y. Kang (2003a) N-2-Chloro-4-nitrophenylbenzenesulfonamide derivative compounds having anti-fungal activites against phytopathogens and method for using thereof., Kor. Patent. 10-2003-0042320
  12. Kang, J. G., D. H. Yang, L. N. Ten, K. H. Park and K. Y. Kang (2003b) N-2,6-dichloro-(4-trifluoromethyl)-phenylbenzenesulfonamide derivative compounds having anti-fungal activites against phytopathogens and method for using thereof., Kor. Patent. 10-2003-0042321
  13. Li, X., X., Yang, X., Liang, Z. Kai, H. Yuan, Y D. Yuan, J. Zhang, R. Wang, F. Ran, S. Qi, Y. Ling, F. Chen and D. Wang (2008) Synthesis and biological activities of 2-oxocycloalkylsulfonamides. Bioorganic & Medicinal Chemistry, 16:4538-4544 https://doi.org/10.1016/j.bmc.2008.02.048
  14. Rosslenbroich, H. J. and D. Stuebler (2000) Botrytis cinerea- history of chemical control and novel fungicides for its management. Crop Prot. 19:557-561 https://doi.org/10.1016/S0261-2194(00)00072-7
  15. Saiz-Urra, L., M. P. Gonzalez, I. G. Collado and R. Hernandez- Galan (2007) Quantitative structure-activity relationship studies for the prediction of antifungal activity of N-arylbenzenesulfonylamides against Botrytis cinerea. J. Mol. Graphics & Model. 25:680-690 https://doi.org/10.1016/j.jmgm.2006.05.006
  16. Shigeru, M., A. Satoshi, T. Yasuko, O. Takeshi, M. Norifusa and M. Hideto (2001) The Biochemical Mode of Action of the Novel Selective Fungicide Cyazofamid: Specific Inhibition of Mitochondrial Complex III in Phythium spinosum. Pesticide Biochem. Physiol., 71:107-115 https://doi.org/10.1006/pest.2001.2569
  17. Soung, M. G., K. Y. Kang, Y. G. Cho and N. D. Sung (2007) 3D-QSAR analysis the fungicidal activity with N-phenylbenzenesulfonamide analogues against phytophthora blight (Phytophthora capsici) and prediction of higher active compounds. J. Korean Soc. Appl. Biol. Chem. 50:192-197
  18. Soung, M. G., T. Y. Hwang, K. Y. Kang and N. D. Sung (2008) 3D-QSARs analysis on the fungicidal activity with N-phenylbenzenesulfonamide Analogues against Fusarium wilt (Fusarium oxysporum) J. Korean Soc. Appl. Biol. Chem. 51:38-43
  19. Stuardo, M. and R. S. Martin (2008) Antifungal properties of quinoa (chenopodium quinoa willd) alkali treated saponins against Botrytis cinerea. Industrial crops and products. 27:296-302 https://doi.org/10.1016/j.indcrop.2007.11.003
  20. Tripos, S. (2001) Molecular modeling and QSAR software on CD-Rom (Ver. 8.0), Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303 St. Louis, MO. 63144-2913, U.S.A