Effect of Osmotic Dehydration and Vacuum Impregnation on the Quality of Dried Apple

삼투건조와 진공주입이 사과 건조제품의 품질에 미치는 영향

  • Published : 2008.04.30

Abstract

This study investigated the effects of osmotic dehydration (OD) and vacuum impregnation (VI) on the quality of dried apple products. Weight reduction and water loss increased during OD, but these decreased in the apples during VI. In particular, VI's effect on increasing solid gain was superb. For apples in 40% sucrose solution, OD and VI were followed by hot-air drying at 50$^{\circ}C$. The experimental data were fitted successfully using the modified Page model. OD and VI increased drying time and decreased the drying rate constant of these apples as compared to the control. Shrinkage and rehydration capacity greatly decreased in the apples dried by OD and increased in the apples dried by VI as compared to the control. OD also decreased titratable acidity and ascorbic acid content considerably. Sensory evaluations of the products indicated that the apples prepared by OD had higher palatability in their rehydrated form in yoghurt, and the apple products prepared by VI had higher palatability in their dried form.

삼투건조와 진공주입에 의한 사과의 물질이동 특성과 열풍건조 시 건조특성, 그리고 제조한 사과 건조제품의 품질을 비교하였다. 삼투건조 시 사과 시료의 중량이 감소하고 수분손실이 증가한 반면 진공주입 시에는 중량이 증가하고 수분손실이 감소하였으며, 진공주입 시 고형분 증가가 컸다. 50$^{\circ}C$에서의 열풍건조시 건조시간에 따른 사과 시료의 수분함량 변화를 Page model에 적용하여 지수 n, k 및 건조시간을 산출하였다. 건조시간이 대조구의 4.45 hr에서 삼투건조 시 5.82 hr, 진공주입 시 6.38 hr로 증가하는 반면 k는 대조구의 0.456 $hr^{-1}$에서 각각 0.326 $hr^{-1}$과 0.277 $hr^{-1}$로 감소하였으며, n은 대조구의 0.938에서 각각 0.754와 0.950으로 변화하였다. 삼투건조 및 진공주입한 사과 건조제품의 품질을 대조구와 비교하였다. 삼투건조에 의해 건조제품의 수축도와 복원력이 대조구에 비해 크게 감소한 반면 압착력이 크게 증가하였고 적정산도와 ascorbic acid의 함량이 크게 감소하였다. 진공주입에 의해서는 대조구에 비해 수축도와 압착력이 증가하였다. 복원한 사과 건조제품에 대한 관능적 기호도 측정 결과 삼투건조한 사과 건조제품이 외관, 조직감, 종합적인 기호도 등의 모든 관능검사 항목에서 유의적으로 높은 기호도를 나타내었고, 건조상태에서의 관능적 기호도 측정 결과에서는 진공주입한 사과건조제품이 모든 관능검사 항목에서 유의적으로 높은 기호도를나타내었다.

Keywords

References

  1. Torreggiani D. Osmotic dehydration in fruit and vegetable processing. Food Res. Int. 26: 59-68 (1993) https://doi.org/10.1016/0963-9969(93)90106-S
  2. Lazarides HN, Katsanidis E, Nickolaidis A. Mass transfer during osmotic pre-concentration aiming at minimal solid uptake. J. Food Eng. 25: 151-166 (1995) https://doi.org/10.1016/0963-9969(92)90158-2
  3. Sablani SS, Rahman MS, Al-Sadeiri DS. Equilibrium distribution data for osmotic drying of apple cubes in sugar-water solution. J. Food Eng. 52: 193-199 (2002) https://doi.org/10.1016/S0260-8774(01)00103-0
  4. Ponting JD. Osmotic dehydration of fruits-recent modifications and applications. Proc. Biochem. 8: 18-20 (1973)
  5. Fito P. Modeling of vacuum osmotic dehydration of food. J. Food Eng. 22: 313-328 (1994) https://doi.org/10.1016/0260-8774(94)90037-X
  6. Salvatori D, Andres A, Chiralt A, Fito P. The response of some properties of fruit to vacuum impregnation. J. Food Process. Pres. 21: 59-73 (1998) https://doi.org/10.1111/j.1745-4530.1998.tb00439.x
  7. Mujica-Paz H, Valdez-Fragoso A, Lopez-Malo A, Palou E, Welti- Chanes J. Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. J. Food Eng. 57: 305-314 (2003) https://doi.org/10.1016/S0260-8774(02)00344-8
  8. Fito P. Modeling of vacuum osmotic dehydration of food. J. Food Eng. 22: 313-328 (1994) https://doi.org/10.1016/0260-8774(94)90037-X
  9. Fito P, Chiralt A, Betoret N, Gras M, Chafer M, Martinez-Monzo J, Andres A, Bidal D. Vacuum impregnation and osmotic dehydration in matrix engineering application in functional fresh food development. J. Food Eng. 49: 175-183 (2001) https://doi.org/10.1016/S0260-8774(00)00220-X
  10. Mandala IG, Anagnostaras EF, Oikonomou CK. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J. Food Eng. 69: 307-316 (2005) https://doi.org/10.1016/j.jfoodeng.2004.08.021
  11. Madamba PS, Driscoll RH, Buckle KA. The thin-layer drying characteristics of garlic slices. J. Food Eng. 29: 75-97 (1996) https://doi.org/10.1016/0260-8774(95)00062-3
  12. Wang ZW, Sun J, Chen F, Liao X, Hu X. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J. Food Eng. 80: 536-544 (2007) https://doi.org/10.1016/j.jfoodeng.2006.06.019
  13. Levi A, Ben-Shalom N, Plat D, Reid DS. Effect of blanching and drying on pectin constituents and related characteristics of dehydrated peaches. J. Food Sci. 53: 1187-1190 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb13558.x
  14. Falade KO, Igbeka JC, Ayanwuyi FA. Kinetics of mass transfer and colour changes during osmotic dehydration of watermelon. J. Food Eng. 80: 979-985 (2007) https://doi.org/10.1016/j.jfoodeng.2006.06.033
  15. Choi HD, Lee HC, Kim YS, Choi IW, Park YK, Seog HM. Effect of combined osmotic dehydration and hot-air drying on the quality of dried apple products. Korean J. Food Sci. Technol. 49: 36-41 (2008)
  16. Barat JME, Chiralt A, Fito P. Equilibrium in cellular food osmotic solution systems as related to structure. J. Food Sci. 63: 836-840 (1998)
  17. Shi XQ, Fito P. Vacuum osmotic dehydration of fruits. Dry. Technol. 11: 1429-1442 (1993) https://doi.org/10.1080/07373939308916908
  18. Nieto AB, Salvatori DM, Castro MA, Alzamora SM. Air drying behavior of apples as affected by blanching and glucose impregnation. J. Food Eng. 36: 63-79 (1998) https://doi.org/10.1016/S0260-8774(98)00043-0
  19. Prothon F, Ahrne LM, Funebo T, Kidman S, Langton M, Sjoholm I. Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and dehydration kinetics. Lebensm. Wiss. Technol. 34: 95-101 (2001) https://doi.org/10.1006/fstl.2000.0745
  20. del Valle JM, Cuadros TRM, Aguilera JM. Glass transitions and shrinkage during drying and storage of osmosed apple pieces. Food Res. Int. 31: 191-204 (1998) https://doi.org/10.1016/S0963-9969(98)00059-3
  21. Kingsly ARP, Meena HR, Jain RK, Singh DB. Shrinkage of ber (Zizyphus mauritian L.) fruits during sun drying. J. Food Eng. 79: 6-10 (2007) https://doi.org/10.1016/j.jfoodeng.2006.01.019
  22. Lozano JE, Rostein E, Urbicain MJ. Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. J. Food Sci. 48: 1497-1502, 1553 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb03524.x
  23. Raoult-Wack AL. Recent advances in the osmotic dehydration of foods. Trends Food Sci. Technol. 5: 255-260 (1994) https://doi.org/10.1016/0924-2244(94)90018-3
  24. Youn KS, Lee JH, Choi YH. Changes of free sugar and organic acid in the osmotic dehydration process of apples. Korean J. Food Sci. Technol. 28: 1095-1103 (1996)
  25. Alzamora SM, Tapia MS, Leunda A, Guerrero SN, Rojas AM, Gerschenson LN, Parada-Arias E. Minimal preservation of fruits: A cited report. pp. 205-225. In: Trends in Food Engineering. Lozano JE, Anon C, Parada-Arias E, Barbosa-Canovas GV (eds). Technomic Publishing Co., Lancaster, PA, USA (2000)