Enhancement of ${\beta}$-1,3-Glucan Functionality by Batch and Semi-continuous Typed Specific Carboxylation

회분식 및 반연속식 특이적 카르복실화 반응에 의한 ${\beta}$-1,3-glucan의 기능성 향상

  • Jeong, Suk-Yun (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Kim, Sang-Woo (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Lee, Yong-Hwan (Korea Food Research Institute) ;
  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Chang, Pahn-Shick (Department of Food Science and Technology, Seoul National University of Technology)
  • 정석윤 (서울산업대학교 식품공학과) ;
  • 김상우 (서울산업대학교 식품공학과) ;
  • 이용환 (한국식품연구원) ;
  • 이재환 (서울산업대학교 식품공학과) ;
  • 장판식 (서울산업대학교 식품공학과)
  • Published : 2008.04.30

Abstract

In this study, batch or semi-continuous reactions, introducing site-specific carboxylic acids in ${\beta}$-1,3-glucan structures, were performed to increase water solubility and gel forming ability, using TEMPO/hypobromite with or without NaBr as catalysts. Regio-selective carboxylic acid formations were determined with infrared (IR) and $^{13}C$ nuclear magnetic resonance (NMR) spectroscopic analyses. The regio-selective reactions with and without NaBr gave oxidation yields of 92.5 and 85.6%, respectively, in the batch type, and yields of 93.9 and 86.4%, respectively, in the semi-continuous type. The reaction times in the batch and semi-continuous reactions without NaBr were delayed by 100 and 150%, respectively, as compared to those with NaBr. A combination of IR and $^{13}C$ NMR analyses were used to confirm the formation of carboxylic acids in ${\beta}$-1,3-glucan. From the batch reactions with and without NaBr, the water solubilities of oxidized products were 50.0 and 55.6%, respectively, and in the semi-continuous reactions they were 52.6 and 53.5%, respectively; while the water solubility of the native ${\beta}$-1,3-glucan was less than 1.0%. Finally, as compared to the native ${\beta}$-1,3-glucan, the gel forming ability of the reaction products was greatly increased irrespective of the presence of NaBr or the reaction type.

불용성 ${\beta}$-1,3-glucan의 물에 대한 수용성과 젤 형성능을 향상시키기 위해 회분식 혹은 반연속식 반응과 촉매로서 NaBr 첨가 및 무첨가 조건을 연구하였다. NaBr 무첨가 반응의 경우 회분식 및 반연속식에서 NaBr 첨가반응에 비해 반응종결시간이 각각 100, 150%씩 늦어졌으나 물에 대한 용해도, 젤 형성능 등의 이화학적 성질은 NaBr 첨가 조건과 동일하게 향상 되었다. 반응시간의 차이는 나타나지만 회분식 반응에서 NaBr 첨가 여부에 관계없이 0.5 N NaOH 20 mL를 소비하여 ${\beta}$-1,3-glucan의 특이적 산화 전환의 이론적 수준인 100% 수율을 보였으나 회수된 산화물은 NaBr 무첨가 반응의 수율이 NaBr 첨가 반응보다 약 7-8% 낮았다. 높은 산화수율을 보인 ${\beta}$-1,3-glucan의 반연속식 공정 연구를 통해 산화반응물의 대량 생산이 가능하여 천연 소재, 기능성식품, 음료 및 주류 등의 산업에 널리 응용될 수 있을 것으로 기대된다. 특히 NaBr을 첨가하지 않고서도 특이적인 산화반응을 유도함으로써 안전성이 확보된 산화 ${\beta}$-1,3-glucan을 생산할 수 있음을 확인하였다.

Keywords

References

  1. Brennan CS, Cleary LJ. The potential use of cereal (1${\rightarrow}$3,1${\rightarrow}$4)-${\beta}$ -D-glucans as functional food ingredients. J. Cereal Sci. 42: 1-13 (2005) https://doi.org/10.1016/j.jcs.2005.01.002
  2. Oh HJ, Lee SR. Physiological function in vitro of ${\beta}$ -glucan isolated from barley. Korean J. Food Sci. Technol. 28: 689-695 (1996)
  3. Wood PJ. Relationships between solution properties of cereal beta-glucans and physiological effects-a review. Trends Food Sci. Tech. 15: 313-320 (2004) https://doi.org/10.1016/j.tifs.2003.03.001
  4. Newman RK, Lewis SE, Newman CW, Boik RJ, Pamage RT. Hypocholesterolemic effect of barley food on healthy man. Nutr. Rep. Int. 39: 749-760 (1989)
  5. Boruch M. Transformation of potato starch during oxidation with hypochlorite. Starch 37: 91-98 (1985) https://doi.org/10.1002/star.19850370306
  6. Floor M, Kiebom APG, Bekkum HV. Preparation and calcium complexation of oxidized polysaccharides. Starch 41: 348-354 (1989) https://doi.org/10.1002/star.19890410907
  7. Miyazawa T, Shiihashi ES, Okawara M. Substituted N,N-dialkylanilines: Relative ionization energies and proton affinities through determination of ion-molecules reaction equilibrium. J. Org. Chem. 50: 1332-1334 (1985) https://doi.org/10.1021/jo00208a047
  8. Anelli PL, Biffi C, Montanari F, Quici S. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J. Org. Chem. 52: 2559-2562 (1987) https://doi.org/10.1021/jo00388a038
  9. De Nooy AEJ, Besemer AC, Van Bekkum. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in watersoluble glucans. Carbohydr. Res. 269: 89-96 (1994) https://doi.org/10.1016/0008-6215(94)00343-E
  10. Chang PS, Cho GB. Oxidation of primary alcohol groups of polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. Korean J. Food Sci. Technol. 29: 446-451 (1997)
  11. Chang PS, Robyt JF. Oxidation of the primary alcohol groups of cyclomaltodextrins with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. Carbohydr. Lett. 3: 31-38 (1998)
  12. Budavari S, O'Neil MJ, Smith A, Heckelman PE. The Merck index. Merck & Co., Inc. Rahway, NJ, USA. pp. 211-212 (1989)
  13. Descotes G, Queneau Y, Praznik W, Huber A. Carbohydrates as organic raw materials, IV, MUV Universitats Verlag, Vienna. Austria. pp. 39-45 (1998)
  14. Bragd PL, Besemer AC, Van Bekkum H. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl ${\alpha}$-D-glycopyranoside. Carbohydr. Res. 328: 355-363 (2000) https://doi.org/10.1016/S0008-6215(00)00109-9
  15. Lemoine S, Thomazwau C, Joannard D, Trombotto S, Descotes G. Bouchu A, Queneau Y. Sucrose tricarboxylate by sonocatalysed TEMPO-mediated oxidation. Carbohydr. Res. 326: 176-184 (2000) https://doi.org/10.1016/S0008-6215(00)00046-X
  16. Suh DS. Reaction and physicochemical properties of corn starch and cellulose oxidized with TEMPO. PhD thesis, Ewha Womans University, Seoul, Korea (2000)
  17. Park KO. Effects of temperature on the reaction and the physicochemical properties of corn starch selectively oxidized with TEMPO and NaOCl. MS thesis, Ewha Womans University, Seoul, Korea (2001)
  18. Kato Y, Matsuo R, Isogai A. Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydr. Polym. 51: 69-75 (2003) https://doi.org/10.1016/S0144-8617(02)00159-5