DOI QR코드

DOI QR Code

Effect of Deposition Parameters on the Properties of Pyrolytic Carbon Deposited by Fluidized-Bed Chemical Vapor Deposition

유동층 화학증착법을 이용하여 증착한 열분해 탄소의 특성에 미치는 증착조건의 영향

  • Park, Jeong-Nam (Nuclear Material Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Material Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Hoon (Nuclear Material Research Division, Korea Atomic Energy Research Institute) ;
  • Cho, Moon-Sung (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Chae-Hyun (Department of Materials Engineering, Paichai University) ;
  • Park, Ji-Yeon (Nuclear Material Research Division, Korea Atomic Energy Research Institute)
  • 박정남 (한국원자력연구원 원자력재료연구부) ;
  • 김원주 (한국원자력연구원 원자력재료연구부) ;
  • 박종훈 (한국원자력연구원 원자력재료연구부) ;
  • 조문성 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 이채현 (배재대학교 재료공학과) ;
  • 박지연 (한국원자력연구원 원자력재료연구부)
  • Published : 2008.08.31

Abstract

The properties of pyrolytic carbon (PyC) deposited from $C_2H_2$ and a mixture of $C_2H_2/C_3H_6$ on $ZrO_2$ particles in a fluidized bed reactor were studied by adjusting the deposition temperature, reactant concentration, and the total gas flow rate. The effect of the deposition parameters on the properties of PyC was investigated by analyzing the microstructure and density change. The density could be varied from $1.0\;g/cm^3$ to $2.2\;g/cm^3$ by controlling the deposition parameters. The density decreased and the deposition rate increased as the deposition temperature and reactant concentration increased. The PyC density was largely dependent on the deposition rate irrespective of the type of the reactant gas used.

Keywords

References

  1. A technology roadmap for generation IV nuclear energy systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002. from http://gif.inel.gov/roadmap
  2. H. Huschka and P. Vygen, Nucl. Tech., 35, 238 (1977) https://doi.org/10.13182/NT77-A31883
  3. K. Minato, K. Fukuda and K. Ikawa, J. Nucl. Mater., 119, 326 (1983) https://doi.org/10.1016/0022-3115(83)90211-8
  4. H. Beutler and R. L. Beatty, Electrochem. Tech., 5, 199 (1967)
  5. J. C. Bokros and R. J. Price, Carbon, 3, 503 (1966) https://doi.org/10.1016/0008-6223(66)90036-4
  6. ASTM, D1505-98, West Conshohocken, PA, USA (1998)
  7. S. P. Seung, J. Y. Lee and E. Y. Chin, J. Kor. Ceram. Soc., 21, 156 (1984)
  8. J. L. Kaae, Carbon, 23, 665 (1985) https://doi.org/10.1016/0008-6223(85)90226-X
  9. J. H. Park, W. –J. Kim, J. N. Park, K. H. Park, J. Y. Park and Y. W. Lee, Kor. J. Mater. Res., 17, 160 (2007) https://doi.org/10.3740/MRSK.2007.17.3.160
  10. R. J. Bard, H. R. Baxman, J. P. Bertino and J. A. O'Rourke, Carbon, 6, 606 (1968) https://doi.org/10.1016/0008-6223(68)90004-3