DOI QR코드

DOI QR Code

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development

Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발

  • Kim, Ji-Sung (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Han, Kun-Yeun (Department of Civil Engineering, Kyungpook National University)
  • 김지성 (한국건설기술연구원 하천해안연구실) ;
  • 한건연 (경북대학교 공과대학 토목공학과)
  • Published : 2008.08.31

Abstract

The object of this study is to develop the model that solves the numerically difficult problems in hydraulic engineering and to demonstrate the applicability of this model by means of various test examples, such as, verification in the gradually varied unsteady condition, three steady flow problems with the change of bottom slope with exact solution, and frictional bed with analytical solution. The governing equation of this model is the integral form of the Saint-Venant equation satisfying the conservation laws, and finite volume method with the Riemann solver is used. The evaluation of the mass and momentum flux with the HLL Riemann approximate solver is executed. MUSCL-Hancock scheme is used to achieve the second order accuracy in space and time. This study introduce the new and simple technique to discretize the source terms of gravity and hydrostatic pressure force due to longitudinal width variation for the balance of quantity between nonlinear flux and source terms. The results show that the developed model's implementation is accurate, robust and highly stable in various flow conditions with source terms, and this model is reliable for one-dimensional applications in hydraulic engineering.

본 연구의 목적은 수공학 분야에서 수치해석이 난해한 문제를 해결하기 위한 모형을 개발하고, 해석해가 존재하는 다양한 수치실험, 즉 하상과 하폭이 함께 변하는 점변부정류 조건에서의 검증, 하상경사가 변화하는 세가지 정상상태 조건의 문제, 그리고 해석해가 있는 마찰하상에 적용함으로써 개발된 모형의 적용성을 검증하기 위한 것이다. 모형의 지배방정식은 보존 법칙을 만족하는 Saint-Venant 적분형 방정식이며, Riemann 해법에 의한 유한체적법이 사용되었다. 질량 및 운동량의 흐름율 계산에 HLL Riemann 근사해법이 사용되었고, 시간-공간에서 2차정확도를 위하여 MUSCL-Hancock 기법이 사용되었다. 본 연구에서는 비선형의 흐름율과 생성항과의 균형을 위하여, 중력과 흐름방향 하폭의 변화로 인한 정수압력에 의한 생성항을 차분하는 새롭고 간편한 기법을 소개하였다. 수치실험 모의결과는 개발된 모형이 생성항을 포함한 다양한 흐름조건에서 정확하고, 견고하며, 매우 안정적임을 보여주고, 또한 수공학 분야에서 일차원 적용에 적합한 모형임을 보여준다.

Keywords

References

  1. 김대홍, 조용식 (2004). "HLLC Approximate Riemann Solver를 이용한 천수방정식 해석." 한국수자원학회 논문집, 한국수자원학회, 제37권, 제10호, pp. 845-855
  2. 김대홍, 조용식 (2005). "불규칙 지형에 적용가능한 쌍곡선형 천수방정식을 위한 개선표면경사법." 대한토목학회논문집, 대한토목학회, 제25권, 제3B호, pp. 223-229
  3. 김원, 한건연, 우효섭, 최규현 (2005a). "상류이송기법에서의 새로운 생성항 처리 기법." 한국수자원학회 논문집, 한국수자원학회, 제38권, 제2호, pp. 155-166 https://doi.org/10.3741/JKWRA.2005.38.2.155
  4. 김원, 한건연, 우효섭 (2005b). "일차원 상류이송형모형의 자연하도에 대한 적용." 한국수자원학회 논문집, 한국수자원학회, 제38권, 제5호, pp. 333-343 https://doi.org/10.3741/JKWRA.2005.38.5.333
  5. 이길성, 이성태 (1998). "충격파 모의를 위한 2차원 유한체적 비정상 흐름모형." 한국수자원학회 논문집, 한국수자원학회, 제31권, 제3호, pp. 279-290
  6. Bae, Y.H. and Cho, Y.S. (2005). "Numerical Analysis of Discontinuous Flows with Finite Volume Method." KSCE Journal of Cilvil Engineering, Vol. 9, No. 5, pp. 439-445
  7. Cozzolino, L. and Pianese, D. (2006). "High-order finite volume modelling of one-dimensional Flows." River Flow 2006, pp. 493-502
  8. Delis, A.I. (2003). "Improved application of the HLLE Riemann solver for the shallow water equations with source terms." Communications in Numerical Methods in Engineering, Vol. 19, pp. 59-83 https://doi.org/10.1002/cnm.570
  9. Fraccarollo, L. and Toro, E.F. (1995). "Experimental and Numerical Assessment of the Shallow Water Model for Two-dimensional Dam-Break Type Problems." Journal of Hydraulic Research, Vol. 33, No. 6, pp. 843-864 https://doi.org/10.1080/00221689509498555
  10. Garcia-Navarro, P. and Vazquez-Cendon, M.E. (2000). "On Numerical Treatment of the Source Terms in the Shallow Water Equations." Computers & Fluids, Vol. 29, pp. 951-979 https://doi.org/10.1016/S0045-7930(99)00038-9
  11. Goutal, N. and Maurel, F. (1997). Proceedings of the 2nd workshop on dam break wave simulation, HE43/97/016/B
  12. Goutal, N. and Maurel, F. (2002). "A finite Volume Solver for 1D Shallow-Water Equations Applied To an Actual River." International Journal for Numerical Methods in Fluids, Vol. 38, pp. 1-19 https://doi.org/10.1002/fld.201
  13. Harten, A. (1983). "High Resolution Schemes for Hyperbolic Conservation Laws." Journal of Computational Physics, Vol. 49, No.3, pp. 357-393 https://doi.org/10.1016/0021-9991(83)90136-5
  14. Hu, K., Mingham, C.G. and Causon, D.M. (1998). "A Bore-Capturing Finite Volume Method for Open-Channel Flows." International Journal for Numerical Methods in Fluids, Vol. 28, pp. 1241-1261 https://doi.org/10.1002/(SICI)1097-0363(19981130)28:8<1241::AID-FLD772>3.0.CO;2-2
  15. Jin, M. and Fread, D.L. (1997). "Dynamic Flood Routing with Explicit and Implicit Numerical Solution Schemes." Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 3, pp. 166-173 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(166)
  16. Kim, D.H., Cho, Y.S. and Kim, W.G. (2004). "Weighted Averaged Flux-Type Scheme for Sallow-Water Equations with Fractional Step Method." Journal of Engineering Mechanics, Vol. 130, No. 2, pp. 152-160 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(152)
  17. LeVeque R.J. (1998). "Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods : The Quasi-Steady Wave-Propogation Algorithm." Journal of Computational Physics, Vol. 146, Issue 1, pp. 346-365 https://doi.org/10.1006/jcph.1998.6058
  18. MacDonald, I. Baines, M.J. Nichols, N.K. and Samuels, P.G. (1995). Steady Open Channel Test Problems with Analytical Solutions, Numerical Analysis Report 3/95, University of Reading
  19. Sanders, B.F. (2001). "High-Resolution and Non-Oscillatory Solution of St. Venant Equations in Non-Rectangular and Non-Prismatic Channels." Journal of Hydraulic Research, Vol. 39, No. 3, pp. 321-330 https://doi.org/10.1080/00221680109499835
  20. Toro, E.F. (1992). Riemann problems and the WAF method for solving the two-dimensional shallow water equation, Phil. Trans. R. Soc. Lond. A
  21. Vazquez-Cendon, M.E. (1999). "Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry." Journal of Computational Physics, pp. 497-526 https://doi.org/10.1006/jcph.1998.6127
  22. Vukovic, S. and Sopta, L. (2003). "Upwind Schemes with Exact Conservation Property for One-Dimensional Open Channel Flow Equations." SIAM J. SCI. Comput., Vol. 24, No. 5, pp. 1630-1649 https://doi.org/10.1137/S1064827501392211
  23. Yoon, T.H. and Kang, S.K. (2004). "Finite Volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids." Journal of Hydraulic Engineering, Vol. 130, No. 7, pp. 678-688 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
  24. Zhou, J.G., Causon, D.M., Mingham, C.G. and Ingram, D.M. (2001). "The Surface Gradient Method for the Treatment of Source Terms in the Shallow-Water Equations." Journal of Computational Physics, pp. 1-25 https://doi.org/10.1006/jcph.2000.6670
  25. Zhou, J.G., Causon, D.M., Ingram, D.M. and Mingham, C.G. (2002). "Numerical solutions of the shallow water equations with discontinuous bed topography." International Journal for Numerical Methods in Fluids, Vol. 38, pp. 769-788 https://doi.org/10.1002/fld.243
  26. Zhou, J.G., Causon, D.M., Mingham, C.G. and Ingram, D.M. (2004). "Numerical Prediction of Dam-Break Flows in General Geometries with Complex Bed Topography." Journal of Hydraulic Engineering, Vol. 130, No. 4, pp. 332-340 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(332)
  27. Zoppou, C. and Roberts, S. (2003). "Explicit Schemes for Dam-Break Simulations." Journal of Hydraulic Engineering, Vol. 129, No. 1, pp. 11-30 https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(11)

Cited by

  1. One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River vol.42, pp.4, 2009, https://doi.org/10.3741/JKWRA.2009.42.4.271