DOI QR코드

DOI QR Code

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik (Department of Anesthesiology, College of Medicine, Chosun University) ;
  • Ko, Woo-Seok (Department of Anesthesiology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2008.06.30

Abstract

The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

Keywords

References

  1. Andriambeloson, E., Kleschyov, A. L., Muller, B., Beretz, A., Stoclet, J. C. and Andriantsitohaina, R. (1997). Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br. J. Pharmacol. 120, 1053-1058 https://doi.org/10.1038/sj.bjp.0701011
  2. Andriambeloson, E., Magnier, C. and Haan-Archipoff, G., Lobstein, A., Anton, R., Beretz, A., Stoclet, J. C., Andriantsitohaina, R. (1998). Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 128, 2324-2333
  3. Andriambeloson, E., Stoclet, J. C. and Andriantsitohaina, R. (1999). Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 33, 248-254 https://doi.org/10.1097/00005344-199902000-00011
  4. Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
  5. Bernatova, I., Puzserova, A., Navarová, J., Csizmadiova, Z. and Zeman, M. (2007). Crowding-induced alterations in vascular system of Wistar-Kyoto rats: role of nitric oxide. Physiol. Res. 56(5), 667-669
  6. Bernatova, I., Pechaoova, O., Babal, P., Kysela, S., Stvrtina, S. and Andriantsitohaina, R. (2002). Wine polyphenols improve cardiovascular remodelling and vascular function in NO-deficient hypertension. Am. J. Physiol. (Heart Circ Physiol) 282, H942-H948
  7. Breslow, M. J., Tobin, J. R., Bredt, D. S., Ferris, C. D., Snyder, S. H. and Traystman, R. J. (1993). Nitric oxide as a regulator of adrenal blood flow. Am. J. Physiol. (Heart Circ Physiol) 264, H464-H469 https://doi.org/10.1152/ajpcell.1993.264.2.C464
  8. Breslow, M. J., Tobin, J. R., Bredt, D. S., Ferris, C. D., Snyder, S. H. and Traystman, R. J. (1992). Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur. J. Pharmacol. 210, 105-106 https://doi.org/10.1016/0014-2999(92)90659-R
  9. Burgoyne, R. D. (1984). Mechanism of secretion from adrenal chromaffin cells. Biochem. Biophys. Acta. 779, 201-216 https://doi.org/10.1016/0304-4157(84)90009-1
  10. Caderni, G., De Filippo, C., Luceri, C., Salvadori, M., Giannini, A., Biggeri, A., Remy, S., Cheynier, V. and Dolara, P. (2000). Effects of black tea, green tea and wine extracts on intestinal carcinogenesis induced by azoxymethane in F344 rats. Carcinogenesis 21(11), 1965-1969 https://doi.org/10.1093/carcin/21.11.1965
  11. Challiss, R. A. J., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  12. Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus- induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett. 247, 429-434 https://doi.org/10.1016/0014-5793(89)81385-7
  13. Chen, C. K. and Pace-Asciak, C. R. (1996). Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen. Pharmacol. 27(2), 363-366 https://doi.org/10.1016/0306-3623(95)02001-2
  14. Curin, Y. and Andriantsitohaina, R. (2005). Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol. Rep. 57, 97-107
  15. Demrow, H. S. and Slane, P. R. (1995). Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91, 1182- 1188 https://doi.org/10.1161/01.CIR.91.4.1182
  16. Diebolt, M., Bucher, B. and Andriantsitohaina, R. (2001). Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38, 159- 165 https://doi.org/10.1161/01.HYP.38.2.159
  17. Douglas, W. W. (1968). Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34, 451-474 https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  18. Duarte, J., Andriambeloson, E., Diebolt, M. and Andriantsitohaina, R. (2004). Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial- dependent vasodilatation. Physiol. Res. 53, 595-602
  19. Fisher, S. K., Holz, R. W. and Agranoff, B. W. (1981). Muscarinic receptors in chromaffin cell culture mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491-487 https://doi.org/10.1111/j.1471-4159.1981.tb00482.x
  20. Fitzpatrick, D. F., Fleming, R. C., Bing, B., Maggi, D. A. and O'Malley, R. (2000). Isolation and characterization of endothelium- dependent vasorelaxing compounds from grape seeds. J. Agric. Food Chem. 48(12), 6384-6390 https://doi.org/10.1021/jf0009347
  21. Fitzpatrick, D. F., Hirschfield, S. L. and Coffey, R. G. (1993). Endothelium-dependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265, H77-78
  22. Fitzpatrick, D. F., Hirschfield, S. L., Ricci, T., Jantzen, P. and Coffey, R. G. (1995). Endothelium-dependent vasorelaxation caused by various plant extracts. J. Cardiovasc. Pharmacol. 26(1), 90-95 https://doi.org/10.1097/00005344-199507000-00015
  23. Flesch, M., Schwarz, A. and Bolun, M. (1998). Effects of red and white wine on endothelium-dependent vasorelaxation of rat aorta and human coronary arteries. Am. J. Physiol. 275(4 Pt 2), H1183-H1190
  24. Frankel, E. N., Kanner, J., German, J. B., Parks, E. and Kinsella, J. E. (1993a). Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet. 341(8843), 454-457 https://doi.org/10.1016/0140-6736(93)90206-V
  25. Frankel, E. N., Waterhouse, A. L. and Kinsella, J. E. (1993b). Inhibition of human LDL oxidation by resveratrol. Lancet. 341(8852), 1103-1104
  26. Freedman, J. E., Li, L. and Sauter, R. et al. (2000). alpha-Tocopherol and protein kinase C inhibition enhance plateletderived nitric oxide release. FASEB J. 14(15), 2377-23779 https://doi.org/10.1096/fj.00-0360fje
  27. Fuster, V., Badimon, J. J. and Chesebro, J. H. (1992). The patogenesis of coronary artery disease and the acute coronary syndromes. New Engl. J. Med. 326, 242-250 https://doi.org/10.1056/NEJM199201233260406
  28. Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69- 71 https://doi.org/10.1038/309069a0
  29. Gaziano, J. M., Buring, J. E., Breslow, J. L., Goldhaber, S. Z., Rosner, B., VanDenburgh, M., Willett, W. and Hennekens, C. H. (1993). Moderate alcohol intake, increased levels of highdensity lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Engl. J. Med. 329(25), 1829-1834 https://doi.org/10.1056/NEJM199312163292501
  30. German, J. B. and Walzem, R. L. (2000). The health benefits of wine. Annu. Rev. Nutr. 20, 561-593 https://doi.org/10.1146/annurev.nutr.20.1.561
  31. Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003 https://doi.org/10.1016/0006-2952(89)90679-5
  32. Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2992-2998
  33. Huang, Y., Chan, N. W. K., Lau, C. W., Yao, X. Q., Chan, F. L. and Chen, Z. Y. (1999). Involvement of endothelium/nilvicoxide in vasorelaxation induced by purified green tea (-) epicatechin. Biochim. Biophys. Acta. 1427, 322-328 https://doi.org/10.1016/S0304-4165(99)00034-3
  34. Huang, Y., Zhang, A. Q., Lau, C. W. and Chen, Z. Y. (1998). Vasorelaxant effect of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci. 63, 275-283 https://doi.org/10.1016/S0024-3205(98)00273-2
  35. Ilno, M. (1989). Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol. 94, 363-383 https://doi.org/10.1085/jgp.94.2.363
  36. Jendekova, L., Kojsova, S., Andriantsitohaina, R. and Pechanova, O. (2006). The time-dependent effect of Provinols on brain NO synthase activity in L-NAME-induced hypertension. Physiol. Res. 55(Suppl 1), S31-37
  37. Kaye, D. M., Lefkowits, J., Jennings, G. L., Bergin, P., Broughton, A. and Esler, M. D. (1995). Adverse consequences of high sympathetic nervous activity in the failing human heart. J. Am. Coll. Cardiol. 26, 1257-1263 https://doi.org/10.1016/0735-1097(95)00332-0
  38. Kee, Y. W. and Lim, D. Y. (2007). Influence of polyphenolic compounds isolated from Rubus coreanum on catecholamine release in the rat adrenal medulla. Arch. Pharm. Res. 30(10), 1240-1251 https://doi.org/10.1007/BF02980265
  39. Kidokoro, Y. and Ritchie, A. K. (1980). Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J. Physiol. 307, 199-216 https://doi.org/10.1113/jphysiol.1980.sp013431
  40. Kilpatrick, D. L., Slepetis, R. J., Corcoran, J. J. and Kirshner, N. (1982). Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427- 435 https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  41. Kilpatrick, D. L., Slepetis, R. J. and Kirshner, N. (1981). Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255 https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  42. Knight, D. E. and Kesteven, N. T. (1983). Evoked transient intracellular free $Ca^{2+}$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. Biol. Sci. 218, 177-199 https://doi.org/10.1098/rspb.1983.0033
  43. Leikert, J. F., Rathel, T. R., Wohlfart, P., Cheynier, V., Vollmar, A. M. and Dirsch, V. M. (2002). Red wine polyphenols enhance endothelial nitric oxide release from endothelial cells. Circulation 106, 1614-1617 https://doi.org/10.1161/01.CIR.0000034445.31543.43
  44. Lim, D. Y. and Hwang, D. H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27(1), 53-67
  45. Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB- 8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15(2), 115-125 https://doi.org/10.1007/BF02974085
  46. Lymperopoulos, A., Rengo, G., Funakoshi, H., Eckhart, A. D. and Koch, W. J. (2007). Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med. 13, 315- 323 https://doi.org/10.1038/nm1553
  47. Marley, P. D., McLeod, J., Anderson, C. and Thomson, K. A. (1995). Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla. J. Auton. Nerv. Syst. 54, 184-194 https://doi.org/10.1016/0165-1838(95)00013-N
  48. Middleton, E. J. R., Kandaswami, C. and Theoharides, T. C. (2000). The effect of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol. Rev. 52, 673-751
  49. Mizutani, K., Ikeda, K., Kawai, Y. and Yamori, Y. (1999). Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J. Nutr. Sci. Vitaminol. (Tokyo) 45(1), 95-106 https://doi.org/10.3177/jnsv.45.95
  50. Mukamal, K. J., Conigrave, K. M., Mittleman, M. A., Camargo, C. A., Stampfer, Jr. M. J., Willett, W. C. and Rimm, E. B. (2003). Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N. Engl. J. Med. 348, 109-118 https://doi.org/10.1056/NEJMoa022095
  51. Oka, M., Isosaki, M. and Yanagihara, N. (1979). Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In Catecholamines: Basic and Clinical frontiers (E. Usdin, I. J. Kopin, J. Brachas, Ed.), pp. 70-72. Pergamon Press, Oxford
  52. Oset-Gasque, M. J., Parramon, M., Hortelano, S., Bosca, L. and Gonzalez, M. P. (1994). Nitric oxide implication in the control of neurosecretion by chromaffin cells. J. Neurochem. 63, 1693-1700 https://doi.org/10.1046/j.1471-4159.1994.63051693.x
  53. O'Sullivan, A. J. and Burgoyne, R. D. (1990). Cyclic GMP regulates nicotine-induced secretion from cultured bovine adrenal chromaffin cells: effects of 8-bromo-cyclic GMP, atrial natriuretic peptide, and nitroprusside (nitric oxide). J. Neurochem. 54, 1805-1808 https://doi.org/10.1111/j.1471-4159.1990.tb01238.x
  54. Pace-Asciak, C. R., Hahn, S. E., Diamandis, E. P., Soleas, G. and Goldberg, D. M. (1995). The red wine phenolics transresveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implication for protection against coronary heart disease. Clin. Chim. Acta. 235, 207-219 https://doi.org/10.1016/0009-8981(95)06045-1
  55. Palacios, M., Knowles, R. G., Palmer, R. M. and Moncada, S. (1989). Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem. Biophys. Res. Commun. 165, 802-809 https://doi.org/10.1016/S0006-291X(89)80037-3
  56. Pechaoova, O., Bernatova, I., Babal, P., Martinez, M. C., Kysela, S., Stvrtina, S. and Andriantsitohaina, R. (2004a). Red wine polyphenols prevent cardiovascular alterations in L-NAMEinduced hypertension. J. Hypertens. 22, 1551-1559 https://doi.org/10.1097/01.hjh.0000133734.32125.c7
  57. Perez-Vizcaino, F., Ibarra, M., Cogolludo, A. L., Duarte, J., Zaragoza- Arnaez, F., Moreno, L., Lopez-Lopez, G. and Tamargo, J. (2002). Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J. Pharmacol. Exp. Ther. 302(1), 66-72 https://doi.org/10.1124/jpet.302.1.66
  58. Rakici, O., Kiziltepe, U., Coskun, B., Aslamaci, S. and Akar, F. (2005). Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int. J. Cardiol. 105(2), 209-115 https://doi.org/10.1016/j.ijcard.2005.01.013
  59. Renaud, S. and de Lorgeril, M. (1992). Wine alcohol, platelet and the French paradox for coronary heart disease. Lancet 339, 1523-1526 https://doi.org/10.1016/0140-6736(92)91277-F
  60. Rimm, E. B., Klatsky, A., Grobbee, D. and Stampfer, M. J. (1996). Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits. BMJ 312, 731-736 https://doi.org/10.1136/bmj.312.7033.731
  61. Rodriguez-Pascual, F., Miras-Portugal, M. T. and Torres, M. (1996). Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. Mol. Pharmacol. 49, 1058-1070
  62. Rotondo, S., Rajtar, G. and Manarinis, S. (1998). Effect of transresveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. Br. J. Pharmacol. 123, 1691-1699 https://doi.org/10.1038/sj.bjp.0701784
  63. Schramm, M., Thomas, G., Towart, R. and Franckowiak, G. (1983). Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303, 535-537 https://doi.org/10.1038/303535a0
  64. Schwarz, P. M., Rodriguez-Pascual, F., Koesling, D., Torres, M. and Forstermann, U. (1998). Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells. Neuroscience 82, 255-265 https://doi.org/10.1016/S0306-4522(97)00274-1
  65. Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823
  66. Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S. and Folts, J. D. (1999). Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100(10), 1050-1055 https://doi.org/10.1161/01.CIR.100.10.1050
  67. Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guineapig smooth muscle cells. Br. J. Pharmacol. 107, 134-140 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  68. Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd ed. pp. 132. Speringer-Verlag, New York
  69. Torres, M., Ceballos, G. and Rubio, R. (1994). Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J. Neurochem. 63, 988-996 https://doi.org/10.1046/j.1471-4159.1994.63030988.x
  70. Tunstall-Pedoe, H., Kuulasmaa, K., Mahonen, M., Tolonen, H., Ruokokoski, E. and Amouyel, P. (1999). Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 353, 1547-1557 https://doi.org/10.1016/S0140-6736(99)04021-0
  71. Uchiyama, Y., Morita, K., Kitayama, S., Suemitsu, T., Minami, N., Miyasako, T. and Dohi, T. (1994). Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular $Ca^{2+}$ concentration and catecholamine release in bovine adrenal chromaffin cells. Jpn. J. Pharmacol. 65(1), 73-77 https://doi.org/10.1254/jjp.65.73
  72. Uyama, Y., Imaizumi, Y. and Watanabe, M. (1992). Effects of cyclopiazonic acid, a novel $Ca^{2+}$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br. J. Pharmacol. 106, 208-214 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  73. Wada, Y., Satoh, K. and Taira, N. (1985a). Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs Arch. Pharmacol. 328, 382- 387 https://doi.org/10.1007/BF00692905
  74. Wada, A., Takara, H., Izumi, F., Kobayashi, H. and Yanagihara, N. (1985b). Influx of $^{22}Na$ through acetylcholine receptorassociated Na channels: relationship between $^{22}Na$ influx, $^}45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medullary cells. Neuroscience 15, 283-292 https://doi.org/10.1016/0306-4522(85)90135-6
  75. Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 https://doi.org/10.1113/jphysiol.1981.sp013676
  76. Wakade, A. R. and Wakade, T. D. (1983). Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978 https://doi.org/10.1016/0306-4522(83)90235-X
  77. Wallerath, T., Deckert, G., Ternes, T., Anderson, H., Li, H. and Wine, K. et al. (2002). Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106, 1652-1658 https://doi.org/10.1161/01.CIR.0000029925.18593.5C
  78. Westfall, T. C., Westfall, D. P. (2005). Adrenergic agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL ed, Goodman & Gilman the pharmacological basis of therapeutics. 11th ed. McGraw-Hill, New York, p 237-295
  79. Wollin, S. D. and Jones, P. J. H. (2001). Alcohol, red wine and cardiovascular disease. J. Nutr. 131, 1401-1404
  80. Yanagihara, N., Isosaki, M., Ohuchi, T. and Oka, M. (1979). Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett. 105, 296- 298 https://doi.org/10.1016/0014-5793(79)80633-X
  81. Zenebe, W. and Pechaoova, O. (2002). Effects of red wine polyphenolic compounds on the cardiovascular system. Bratisl. Lek. Listy. 103, 159-165
  82. Zenebe, W., Pechaoova, O. and Andriantsitohaina, R. (2003). Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol. Res. 52, 425-432

Cited by

  1. Depressor action and vasorelaxation of methylene chloride fraction extracted from Rubus coreanum vol.20, pp.1, 2014, https://doi.org/10.1186/s40885-014-0006-1
  2. Inhibitory Effects of Polyphenol-Rich Fraction Extracted from Rubus coreanum M on Thoracic Aortic Contractility of Spontaneously Hypertensive Rats vol.19, pp.4, 2011, https://doi.org/10.4062/biomolther.2011.19.4.477
  3. Increases in Blood Pressure and Heart Rate Induced by Caffeine are Inhibited by (−)-Epigallocatechin-3-O-gallate: Involvement of Catecholamines vol.58, pp.4, 2008, https://doi.org/10.1097/fjc.0b013e31822d93cb