L-ribose와 L-arabinose 분리를 위한 Aspen chromatography를 이용한 SMB [Simulated moving bed] 전산모사

Simulation of SMB [Simulated Moving Bed] Chromatography for Separation of L-ribose and L-arabinose by ASPEN chromatography

  • 이선희 (충남대학교 화학공학과) ;
  • 이은 (충남대학교 화학공학과) ;
  • 김인호 (충남대학교 화학공학과)
  • Lee, Seon-Hee (Department of Chemical engineering, Chungnam National University) ;
  • Lee, Eun (Department of Chemical engineering, Chungnam National University) ;
  • Kim, In-Ho (Department of Chemical engineering, Chungnam National University)
  • 발행 : 2008.04.29

초록

SMB 크로마토그래피를 위한 예비 실험으로서 L-ribose와 L-arabinose의 혼합물의 분리 특성을 $NH_2$ 컬럼을 사용하여 확인하였고 두 성분 분리 최적 조건으로 Acetonitrile과 증류수의 조성이 85/15 (v/v)에서 실험을 수행하였다. PIM(Pulse input method)과 Aspen chromatography 전산모사를 통해 L-ribose와 L-arabinose가 선형 흡착등온식을 따르는 것을 알 수 있었으며 각 성분의 Henry상수를 추산하였고 다음과 같다. $$C_{S,Ribose}=3.51{\cdot}C_{M.Ribose}$$ $$C_{S,Arabinose}=5.07{\cdot}C_{M.Arabinose}$$ 이를 바탕으로 SMB 크로마토그래피의 최적 운전조건을 수립하기 위하여 Triangle 이론에 의한 운전 조작변수를 추산함으로서 $m_2\;=\;3.51$, $m_3\;=\;5.07$일 때 즉, 삼각형에서 꼭지점의 조건에서 L-ribose와 L-arabinose의 순도가 각각 85, 80% 정도로 두 성분의 분리에 있어서 가장 효과적인 운전 조건임을 확인 할 수 있었다.

SMB (simulated moving bed) chromatography is a very useful utility for the separation of binary system. We simulated the separation of L-arabinose and L-ribose from the mixture by using lab-scale 4(1-1-1-1)-zone SMB chromatography. Preliminary experiments of PIM (pulse input method) were performed to measure adsorption isotherms of L-ribose and L-arabinose in $NH_2$ HPLC column, and experimental and simulated results from ASPEN chromatography were compared. To find the most suitable separation condition in SMB, we carried out a simulation in $m_2-m_3$ plane base on the triangle theory and calculated operating parameters (flow rate of four zone, switching time and feed concentration and so on) using ASPEN chromatography under the conditions of linear isotherms obtained from PIM.

키워드

참고문헌

  1. Du Jinfa, Yongseok Choi, Kyong Lee, Chun Byoung K., Hong Joon H., and Chu Chung K. (1999), A practical synthesis of L-FMAU from L-arabinose, Nucleosides & Nucletides, 18(2), 187-195 https://doi.org/10.1080/15257779908043066
  2. Izumori K., K. Yamanaka, and A. D. Elbein (1976), Pentosemetabolism in Mycobacterium smegmatis, specificity of induction of pentose isomerase., J. Bacteriol. 128, 587-591
  3. Shimonishi, T. and K. Izumori (1996), A new enzyme, L-ribose isomerase from Acetobactor sp. strain D-28, J. Ferment. Bioeng. 81, 493-497 https://doi.org/10.1016/0922-338X(96)81468-1
  4. Stephen, J. A. (2005), L-ribose : An Easily Prepared Rare Sugar Aust. J. Chem. 58, 58-59
  5. Kim, S. Y., T. Song, J. K. Lee, S. S. Suh, and M. H. Chio (2002), Adsorptive Correlations of Chromatography for Ibuprofen Enantiomers, HWAHAK KONGHAK, 40(3), 324-329
  6. Mazzotti M., G. Storti, M. Morbidelli (1997), Optimal operation of simulated moving bed units for nonlinear chromatographic separations, J. Chromat. A. 769, 3-24 https://doi.org/10.1016/S0021-9673(97)00048-4
  7. Milgliorini, C., M. Mazzotti, M. Morbidelli (1998), Continous chromatographic separation through simulated moving beds under linear and nonlinear conditions, J. Chromat. A. 827, 161-173 https://doi.org/10.1016/S0021-9673(98)00643-8