백서의 치아이동 시 피질골 천공이 치주조직의 MMP-1, -8, -13 mRNA의 발현에 미치는 영향

The expression of MMP-1, -8, and -13 mRNA in the periodontal ligament of rats during tooth movement with cortical punching

  • 곽춘 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 김성식 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 박수병 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 손우성 (부산대학교 치의학전문대학원 치과교정학교실) ;
  • 김용덕 (부산대학교 치의학전문대학원 구강악안면외과학교실) ;
  • 전은숙 (부산대학교병원 의학연구소) ;
  • 박미화 (부산대학교병원 의학연구소)
  • Gwack, Choon (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Seong-Sik (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Park, Soo-Byung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Son, Woo-Sung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Yong-Deok (Department of Oral & Maxillofacial Surgery, School of Dentistry, Pusan National University) ;
  • Jun, Eun-Sook (Medical Science Research Institute, Pusan National University Hospital) ;
  • Park, Mi-Hwa (Medical Science Research Institute, Pusan National University Hospital)
  • 발행 : 2008.06.30

초록

본 연구는 피질골 천공을 동반한 교정적인 치아이동이 통상의 교정적인 치아이동과 조직 재형성의 정도에 차이가 존재하는지 알아보기 위하여 시행하였다. 실험동물은 15주령 군 300 - 350 g의 자성 백서(Sprague-Dawley Rat)를 사용하였으며 피질골 천공을 동반한 치아이동 실험군(TMC group, n = 16)과 단순 치아이동 대조군(TM group, n = 16)으로 나누었다. 모든 실험동물에 20 gm 이하의 힘으로 전치부를 이개시키는 치아 이동을 시행하였으며, 실험군은 상악전치부의 직후방 구개측에서 치근을 손상시키지 않도록 직경 1.0 mm의 microscrew를 사용하여 피질골 천공을 하였다. 모든 실험동물은 1, 4, 7, 14일에 희생시켜서 matrix metalloproteinase (MMP)-1, -8, -13 효소의 RT-PCR과 I형 교원질(Collagen type I)과 Tissue inhibitor of metalloproteinase-1 (TIMP-1)의 면역조직화학염색(immunohisto-chemistry)을 시행하였다. MMP-1은 실험군에서 4일째에 가장 활발한 발현을 보이다가 7일째와 14일째에 조금씩 감소하는 경향을 보인 반면에, 대조군에서는 실험 7일째에 가장 높은 발현을 보이다가 14일째 들어서 감소하는 양상을 보였다. MMP-8은 실험 1일째부터 실험군이 대조군에 비해서 더 많은 발현을 보였으며, 특히 4일째의 실험군에서는 대조군보다 두 배 이상 발현되었다. MMP-13은 실험 1일째의 실험군에서 가장 높은 발현도를 보였으며, 대조군에서는 오히려 미처치 대조군에 비해 더 낮게 발현되었다. I형 교원질의 면역조직화학염색 결과는 실험 4일째부터 압박측에서는 실험군에서 대조군보다 더 많은 교원질의 소실을 보였고, 인장측에서는 대조군이 실험군보다 더 많은 교원질의 염색 소견을 보였다. TIMP-1은 실험 4일째에는 압박측에서 대조군이 실험군보다 치주인대와 치조골의 골세포에서 좀 더 균일한 염색 소견을 보였다. 이상의 실험 결과에서 피질골 천공은 백서의 실험적 치아이동에 있어 치주인대와 치조골 결합 조직의 재형성 속도를 증가시키는 것으로 판단된다.

Objective: The aim of this study was to determine whether cortical punching stimulates the expression of matrix metalloproteinase-1, -8, and -13 in orthodontic tooth movement in rats. Methods: A total of 32 male sprague-dawley rats at 15 weeks old were divided into two groups of 16 rats each, to form the tooth movement with cortical punching (TMC) group and tooth movement only (TM) group. A total of 20 gm of orthodontic force was applied to rat incisors to cause experimental tooth movement. Cortical punching was performed on the palatal side near the central incisor with a 1.0 mm width microscrew in the TMC group. The duration of tooth movement was 1, 4, 7, and 14 days. Results: Measurements of the mRNA expression were selected as the means to determine the identification of expression of MMP-1, -8, and -13. In the TMC group, the expression of collagen type I was greater than that of the TM group from day 4 to day 14. Expression of TIMP-1 in the TM group was greater than that of the TMC group in the pressure side of PDL and alveolar bone cell at day 4. In the TMC group, TIMP-1 was expressed at the osteoclast, but not at the tooth surface of the TM group at day 14, Maximum induction of the mRNA of MMP-1 was observed on day 4 in the TMC group, but it was observed on day 7 in the TM group. MMP-8 mRNA of the TMC group was twice greater than that of the TM group at f days. In the TMC group, maximum induction of MMP-13 mRNA was observed on day 1. Conclusions: These findings suggested that cortical punching can stimulate remodeling of PDL and alveolar bone connective tissues during experimental orthodontic tooth movement in rats.

키워드

참고문헌

  1. Yamasaki K, Shibata Y, Fukuhara T. The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata). J Dent Res 1982;61:1444-6 https://doi.org/10.1177/00220345820610121401
  2. Takano-Yamamoto T, Kawakami M, Kobayasi Y, Yamashiro T, Sakuda M. The effect of local application of 1,25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res 1992;71:53-9 https://doi.org/10.1177/00220345920710010901
  3. Soma S, Yamashita K, Matsumoto S, Takada K. Effect of continuous infusion of PTH on orthodontic tooth movement. J Jpn Orthod Soc Abstr 1997
  4. Frost HM. The regional accelerated phenomenon. Orthop Clin North Am 1981;12:725-6
  5. Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 1983;31:3-9
  6. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem. Anat Rec 1990;226:414-22 https://doi.org/10.1002/ar.1092260403
  7. Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol 1959;12:515-29 https://doi.org/10.1016/0030-4220(59)90153-7
  8. Wilcko WM, Wilcko T, Bouquot JE, Ferguson DJ. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent 2001;21:9-19
  9. Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49-60 https://doi.org/10.1016/j.cytogfr.2003.10.005
  10. Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers 2002;66:19-32 https://doi.org/10.1002/bip.10201
  11. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000;14:2123-33 https://doi.org/10.1101/gad.815400
  12. Tsubota M, Sasano Y, Takahashi I, Kagayama M, Shimauchi H. Expression of MMP-8 and MMP-13 mRNAs in rat periodontium during tooth eruption. J Dent Res 2002;81:673-8 https://doi.org/10.1177/154405910208101004
  13. Ren Y, Maltha JC, Kuijpers-jagtman AM. The rat as a model for orthodontic tooth movement-a critical review and proposed solution. Eur J Orthod 2004;26:483-90 https://doi.org/10.1093/ejo/26.5.483
  14. Pfeifer JS. The reaction of alveolar bone to flap procedures in man. Periodontics 1965;3:135-40
  15. Anholm JM, Crites DA, Hoff R, Rathbun WE. Calif Dent Assoc J 1986;14:7-11
  16. Gantes B, Rathbun E, Anholm M. Effects on the periodontium following corticotomy-facilitated orthodontics. Case reports. J Periodontol 1990;61:234-8 https://doi.org/10.1902/jop.1990.61.4.234
  17. Kana JS, Hutschenreiter G, Haina D, Waidelich W. Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 1981;116:293-6 https://doi.org/10.1001/archsurg.1981.01380150021005
  18. Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surg Med 1985;5:31-9 https://doi.org/10.1002/lsm.1900050105
  19. Bosatra M, Jucci A, Olliaro P, Quacci D, Sacchi S. In vitro fibroblast and dermis fibroblast activation by laser irradiation at low energy. An electron microscopic study. Dermatologica 1984;168:157-62 https://doi.org/10.1159/000249691
  20. Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J. Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1986;1:61-77
  21. Rygh P. The periodontal ligament under stress. In: Norton LA, Burstone CJ, editors. The biology of tooth movement. Boca Raton, FL:CRC Press; 1989. p. 9-28
  22. Igarashi K, Miyoshi K, Shinoda H, Saeki S, Mitani H. Diurnal variation in tooth movement in response to orthodontic force in rats. Am J Orthod Dentofacial Orthop 1998;114:8-14 https://doi.org/10.1016/S0889-5406(98)70231-8
  23. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 2001;80:887-91 https://doi.org/10.1177/00220345010800030801
  24. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 2002;17:210-20 https://doi.org/10.1359/jbmr.2002.17.2.210
  25. Domon S, Shimokawa H, Matsumoto Y, Yamaguchi S, Soma K. In situ hybridization for matrix metalloproteinase-1 and cathepsin K in rat root-resorbing tissue induced by tooth movement. Arch Oral Biol 1999;44:907-15 https://doi.org/10.1016/S0003-9969(99)00091-6
  26. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinases: a review. Critic Rev Oral Biol Med 1993;4:197-250 https://doi.org/10.1177/10454411930040020401
  27. Beertsen W, Everts V. The site of remodelling of collagen in the periodontal ligament of the mouse incisor. Anat Rec 1977;189:479-97 https://doi.org/10.1002/ar.1091890308
  28. Beertsen W, Brekelmans M, Everts V. The site of collagen resorption in the periodontal ligament of the rodent molar. Anat Rec 1978;192:305-17 https://doi.org/10.1002/ar.1091920211
  29. Circolo A, Welgus HG, Pierce GF, Kramer J, Strunk RC. Differential regulation of the expression of proteinases/antiproteinases in fibroblasts. Effects of interleukin-1 and platelet- derived growth factor. J Biol Chem 1991;266:12283-8
  30. Salonen J, Uitto VJ, Pan YM, Oda D. Proliferating oral epithelial cells in culture are capable of both extracellular and intracellular degradation of interstitial collagen. Matrix 1991;11: 43-55 https://doi.org/10.1016/S0934-8832(11)80226-X
  31. Berg RA, SchwarTz ML, Crystal RG. Regulation of the production of secretory proteins: intracellular degradation of newly synthesized "defective" collagen. Proc NatL Acad Sci USA 1980;77:4746-50 https://doi.org/10.1073/pnas.77.8.4746
  32. Melcher AH, Chan J. Phagocytosis and digestion of collagen by gingival fibroblasts in vivo: a study of serial sections. J Ultrastruct Res 1981;77:1-36 https://doi.org/10.1016/S0022-5320(81)80064-0
  33. Everts V, Wolvius E, Saklatvala J, Beertsen W. Interleukin 1 increases the production of collagenase but does not influence the phagocytosis of collagen fibrils. Matrix 1990;10:388-93 https://doi.org/10.1016/S0934-8832(11)80146-0
  34. Gronowicz G, Hadjimichael J, Richards D, Cerami A, Rossomando EF. Correlation between tumor necrosis factor-( TNF-alpha)-induced cytoskeletal changes and human collagenase gene induction. J Periodontal Res 1992;27:562-8 https://doi.org/10.1111/j.1600-0765.1992.tb01737.x
  35. Sodek J, Ferrier JM. Collagen remodelling in rat periodontal tissues: compensation for precursor reutilization confirms rapid turnover of collagen. Coll Relat Res 1988;8:11-21 https://doi.org/10.1016/S0174-173X(88)80032-3
  36. Werb Z, Hembry RM, Murphy G, Aggeler J. Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture. J Cell Biol 1986;102:697-702 https://doi.org/10.1083/jcb.102.3.697
  37. Parakkal PF. Involvement of macrophages in collagen resorption. J Cell Biol 1969;41:345-54 https://doi.org/10.1083/jcb.41.1.345
  38. Ten Cate AR, Freeman E. Collagen remodelling by fibroblasts in wound repair. Preliminary observations. Anat Rec 1974;179:543-6 https://doi.org/10.1002/ar.1091790414
  39. Sorsa T, Uitto VJ, Suomalainen K, Vauhkonen M, Lindy S. Comparison of interstitial collagenase from human gingiva, sulcular fluid and polymorphonuclear leukocytes. J Periodontal Res 1988;23:386-93 https://doi.org/10.1111/j.1600-0765.1988.tb01618.x
  40. Ingman T, Sorsa T, Suomalainen K, Halinen S, Lindy O, Lauhio A, et al. Tetracycline inhibition and the cellular source of collagenase in gingival crevicular fluid in different periodontal diseases. A review article. J Periodontol 1993;64:82-8 https://doi.org/10.1902/jop.1993.64.2.82
  41. Kryshtalskyj E, Sodek J, Ferrier JM. Correlation of collagenolytic enzymes and inhibitors in gingival crevicular fluid with clinical and microscopic changes in experimental periodontitis in the dog. Arch Oral Biol 1986;31:21-31 https://doi.org/10.1016/0003-9969(86)90109-3
  42. Kryshtalskyj E, Sodek J. Nature of collagenolytic enzyme and inhibitor activities in crevicular fluid from healthy and inflamed periodontal tissues of beagle dogs. J Periodontal Res 1987;22:264-9 https://doi.org/10.1111/j.1600-0765.1987.tb01584.x
  43. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, et al. Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res 2003;82:646-51 https://doi.org/10.1177/154405910308200815
  44. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609-52 https://doi.org/10.1146/annurev.biochem.67.1.609
  45. Harris ED, Cartwright EC. Mammalian collagenases. In: Barrett AJ editor. Proteinases in mammalian cells and tissues. Amsterdam: Elsevier/North Holland Biomedical Press;1997. p. 249-83
  46. Harris ED Jr, Krane SM. Collagenases (second of three parts). N Engl J Med 1974;291:605-9 https://doi.org/10.1056/NEJM197409192911205
  47. van der Zee E, Everts V, Beertsen W. Cytokines modulate contraction of periosteal explants from rabbit calvariae. Connect Tissue Res 1995;31:141-51 https://doi.org/10.3109/03008209509028402
  48. van der Zee E, Everts V, Beertsen W. Cytokines modulate routes of collagen breakdown. Review with special emphasis on mechanisms of collagen degradation in the periodontium and the burst hypothesis of periodontal disease progression. J Clin Periodontol 1997;24:297-305 https://doi.org/10.1111/j.1600-051X.1997.tb00761.x
  49. Redlich M, Reichenberg E, Harari D, Zaks B, Shoshan S, Palmon A. The effect of mechanical force on mRNA levels of collagenase, collagen type I, and tissue inhibitors of metalloproteinases in gingiva of dogs. J Dent Res 2001;80:2080-4 https://doi.org/10.1177/00220345010800121101
  50. Holliday LS, Vakani A, Archer L, Dolce C. Effects of matrix metalloproteinase inhibitors on bone resorption and orthodontic tooth movement. J Dent Res 2003;82:687-91 https://doi.org/10.1177/154405910308200906