The effect of loading time on the stability of mini-implant

교정력 부하시기에 따른 교정용 미니 임플란트의 안정성

  • Lee, Seung-Yeon (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Cha, Jung-Yul (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Yoon, Tae-Min (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Park, Young-Chel (Department of Orthodontics, College of Dentistry, Dental Science Research Institute, Yonsei University)
  • 이승연 (연세대학교 치과대학 교정학교실) ;
  • 차정열 (연세대학교 치과대학 교정학교실) ;
  • 윤태민 (연세대학교 치과대학 교정학교실) ;
  • 박영철 (연세대학교 치과대학 교정학교실, 두개안면기형 연구소, 구강과학연구소)
  • Published : 2008.06.30

Abstract

Objective: The purpose of this study was to investigate the stability of mini-implants in relation to loading time. Methods: A total of 48 mini-implants (ORLUS, Ortholution, Korea) were placed into the buccal alveolar bone of the mandible in 8 male beagle dogs. Orthodontic force (200-250gm) was applied immediately for the immediate loading group while force application was delayed for 3 weeks in the delayed loading group. For the subsequent loading periods (3, 6, 12 weeks), BIC (bone implant contact) and BV/TV (bone volume/total volume) and mobility test were carried out. Results: The immediate loading group showed no changes in BIC from 3 to 12 weeks, while the delayed loading group showed a significant increase in BIC between 3 and 12 weeks (p<0.05). The BV/TO of the delayed loading group significantly increased from 6 to 12 weeks of loading (p<0.05), while the BV/TV of the immediate loading group decreased from 3 to 12 weeks of loading. However, there was no significant difference in BV/TV between experimental groups. The mobility of the immediate loading group was not significantly different from that of the delayed loading group after 12 weeks of loading (p<0.05). Conclusions: These results showed that immediate loading does not have a negative effect on the stability of mini-implants compared to the early loading method in both the clinical and histomorphometric point of view.

본 연구는 미니 임플란트 식립 후 교정력 부하시기와 관련하여 임플란트 주위골의 치유과정을 조사하였다. 성견 8마리의 하악 협측골에 교정용 미니 임플란트(ORLUS, Ortholution CO, Korea) 48개를 식립한 후 교정력을 주지 않은 대조군과 식립 후 즉시 교정력을 준 즉시 부하군, 그리고 식립 후 3주간의 치유기간을 두고 교정력을 준 지연 부하군으로 나누어 각각의 군에 대해 3주, 6주, 12주가 경과된 시점에 임플란트 주위골의 변화를 조직 계측학적으로 관찰하였다. 골 접촉률은 즉시 부하군에서 시기에 따른 유의한 변화가 없었으며 지연 부하군은 3주에 비해 12주에서 유의하게 증가하였다(p<0.05). 각 시점에서 군간의 골 접촉률을 비교했을 때 12주째 지연 부하군이 즉시 부하군 보다 유의하게 높았다(p<0.05). 골 면적비율은 즉시 부하군의 경우, 시기에 따른 유의한 변화가 없었으며, 지연 부하군과 대조군은 6주에 비해 12주째 유의한 증가를 보였으며 (p<0.05), 12주째 실험군 간에 유의한 차이는 관찰되지 않았다(p>0.05). 동요도는 12주째 즉시 부하군과 지연 부하군 간에 유의한 차이는 없었다(p>0.05). 위의 결과에서 즉시 부하가 self drilling형 미니 임플란트 주위골의 안정성에 부정적인 영향을 주지 않았으므로 식립 즉시 교정력을 부여하여 사용하는 데 임상적으로 문제가 없을 것으로 판단된다.

Keywords

References

  1. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7
  2. Park HS, Bae SM, Kyung HM, Sung JH. Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod 2001;35:417-22.
  3. Kyung SH, Choi JH, Park YC. Miniscrew anchorage used to protract lower second molars into first molar extraction sites. J Clin Orthod 2003;37:575-9
  4. Lee JS, Kim DH, Park YC, Kyung SH, Kim TK. The efficient use of midpalatal miniscrew implants. Angle Orthod 2004; 74:711-4
  5. Roth A, Yildirim M, Diedrich P. Forced eruption with microscrew anchorage for preprosthetic leveling of the gingival margin. Case report. J Orofac Orthop 2004;65:513-9 https://doi.org/10.1007/s00056-004-0430-z
  6. Kyung SH, Choi HW, Kim KH, Park YC. Bonding orthodontic attachments to miniscrew heads. J Clin Orthod 2005;39: 348-53; quiz 369
  7. Park HS, Lee SK, Kwon OW. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod 2005;75: 602-9
  8. Kim HJ, Yun HS, Park HD, Kim DH, Park YC. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop 2006;130:177-82 https://doi.org/10.1016/j.ajodo.2004.12.024
  9. Turley PK, Kean C, Schur J, Stefanac J, Gray J, Hennes J, et al. Orthodontic force application to titanium endosseous implants. Angle Orthod 1988;58:151-62
  10. Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989;59:247-56
  11. Wehrbein H, Diedrich P. Endosseous titanium implants during and after orthodontic load--an experimental study in the dog. Clin Oral Implants Res 1993;4:76-82 https://doi.org/10.1034/j.1600-0501.1993.040203.x
  12. Roberts WE, Nelson CL, Goodacre CJ. Rigid implant anchorage to close a mandibular first molar extraction site. J Clin Orthod 1994;28:693-704
  13. Akin-Nergiz N, Nergiz I, Schulz A, Arpak N, Niedermeier W. Reactions of peri-implant tissues to continuous loading of osseointegrated implants. Am J Orthod Dentofacial Orthop 1998; 114:292-8 https://doi.org/10.1016/S0889-5406(98)70211-2
  14. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 2000;3:23-28 https://doi.org/10.1034/j.1600-0544.2000.030105.x
  15. Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK Jr, Roberts WE, Garetto LP. The use of small titanium screws for orthodontic anchorage. J Dent Res 2003;82:377-81 https://doi.org/10.1177/154405910308200510
  16. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8 https://doi.org/10.1016/S0889-5406(03)00565-1
  17. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19:100-6
  18. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006;130:18-25 https://doi.org/10.1016/j.ajodo.2004.11.032
  19. Park HS, Yen S, Jeoung SH. Histologic and biomechanical characteristics of orthodontic self-drilling and self-tapping microscrew implants. Korean J Orthod 2006;36:295-397
  20. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2005;128:190-4 https://doi.org/10.1016/j.ajodo.2004.01.030
  21. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-71 https://doi.org/10.1016/0169-6009(92)90875-E
  22. Freire JN, Silva NR, Gil JN, Magini RS, Coelho PG. Histomorphologic and histomophometric evaluation of immediately and early loaded mini-implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007;131:704.e1-9
  23. Gray JB, Steen ME, King GJ, Clark AE. Studies on the efficacy of implants as orthodontic anchorage. Am J Orthod 1983;83:311-7 https://doi.org/10.1016/0002-9416(83)90226-9
  24. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone 1993;14:103-9 https://doi.org/10.1016/8756-3282(93)90235-3
  25. Isidor F. Mobility assessment with the Periotest system in relation to histologic findings of oral implants. Int J Oral Maxillofac Implants 1998;13:377-83
  26. Schulte W, Lukas D. The Periotest method. Int Dent J 1992; 42:433-40
  27. Tricio J, Laohapand P, van Steenberghe D, Quirynen M, Naert I. Mechanical state assessment of the implant-bone continuum: a better understanding of the Periotest method. Int J Oral Maxillofac Implants 1995;10:43-9
  28. Trisi P, Rao W, Rebaudi A. A histometric comparison of smooth and rough titanium implants in human low-density jawbone. Int J Oral Maxillofac Implants 1999;14:689-98
  29. Oyonarte R, Pilliar RM, Deporter D, Woodside DG. Peri-implant bone response to orthodontic loading: Part 2. Implant surface geometry and its effect on regional bone remodeling. Am J Orthod Dentofacial Orthop 2005;128:182-9 https://doi.org/10.1016/j.ajodo.2004.02.024