DOI QR코드

DOI QR Code

Synthesis of Radar Measurements and Ground Measurements using the Successive Correction Method(SCM)

연속수정법을 이용한 레이더 자료와 지상 강우자료의 합성

  • Kim, Kyoung-Jun (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Choi, Jeong-Ho (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoo, Chul-Sang (Department of Civil, Environmental and Architectural Engineering, Korea University)
  • 김경준 (고려대학교 건축.사회환경공학과) ;
  • 최정호 (고려대학교 건축.사회환경공학과) ;
  • 유철상 (고려대학교 건축.사회환경공학과)
  • Published : 2008.07.31

Abstract

This study investigated the application of the successive correction method(SCM), a simple data assimilation method, for synthesizing the radar and rain gauge data. First, the number of iteration and influence radius for the SCM application were decided based on their sensitivity analysis. Also, for the evaluation of synthetic rainfall, the distributed rainfall field using the dense rainfall gauge network was assumed to be the true one. The synthetic rainfall field based on the SCM was also compared quantitatively with the one based on the co-Kriging frequently used nowadays. As the results, the SCM, a simple and economical data assimilation method, was found to secure the accuracy and statistical characteristics of the co-Kriging application.

본 연구에서는 자료동화 기법의 가장 간단한 방법이라 할 수 있는 연속수정법(successive correction method)을 이용한 레이더 강우자료와 지상 강우자료의 합성방법에 대한 적용성을 검토하였다. 우선 연속수정법의 적용 시 고려해야 할 사항인 반복계산 횟수 및 영향 반경의 규모를 민감도 분석을 통해 결정하였다. 또한 자료 합성에 대한 정량적인 평가를 위해 밀도 있는 지상 강우자료를 공간분포시켜 실제 강우장을 가정하였다. 최근 자료 합성에 많이 이용되고 있는 co-Kriging을 이용하여 두 자료를 합성하여 연속수정법에 의한 자료 합성 결과를 정량적으로 분석하였다. 그 결과 간단하고 경제적인 자료동화 기법인 연속수정법으로도 co-Kriging을 이용하는 경우의 통계적 특성 및 정확도를 확보할 수 있다는 것을 알 수 있었다.

Keywords

References

  1. 염경택, 이충기, 정구열, 정세웅, 김주환, 박우양, 정의용 (2000). “강화수문레이더를 이용한 임진강 유역홍수예경보시스템 운영현황.” 한국기상학회 가을학술발표회 논문집, 한국기상학회, pp. 91-94
  2. 이명섭 (2000). “수문레이더를 이용한 임진강유역 홍수예경보시스템 구축.” 한국수자원학회지, 한국수자원학회, 제33권, 제1호, pp. 58-62
  3. 정성화 (2005). 레이더 강우강도의 개선과 면적 강우량의 실시간 추정, 석사학위논문, 경북대학교
  4. Barnes, S. L. (1964). “A technique for maximizing details in numerical weather map analysis.” Journal of Applied Meteorology, Vol. 3, pp.396-409 https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
  5. Bergthorsson, P., and Doos, B. (1955). “Numerical weather map analysis.” Tellus, Vol. 7, No. 3, pp. 329-340 https://doi.org/10.1111/j.2153-3490.1955.tb01170.x
  6. Brandes, E.A. (1975). “Optimizing rainfall estimates with the aid of radar.” Journal of Applied Meteorology, Vol. 14, pp. 1339-1345 https://doi.org/10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
  7. Caya, A., Sum, J., Snyder, C. (2005). “A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation.” Monthly Weather Review, Vol. 133, pp. 3081-3094 https://doi.org/10.1175/MWR3021.1
  8. Chumchean, S., Seed, A., and Sharma, A. (2006). “Correcting of real-time radar rainfall bias using a Kalman filtering approach.” Journal of Hydrology, Vol. 317, pp. 123-137 https://doi.org/10.1016/j.jhydrol.2005.05.013
  9. Cressman, G. P. (1957). “An operational objective analysis system.” Monthly Weather Review, Vol. 87, pp. 367-374 https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  10. Crow, W.T., and Wood E.F. (2003). “The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97.” Advances in Water Resources, Vol. 26, pp. 137-149 https://doi.org/10.1016/S0309-1708(02)00088-X
  11. Entekhabi, D., Asrar, G.R., Betts, A.K., Beven, K.J., Bras, R.L. and Duffy, C.J. (1999). "An agenda for land-surface hydrology and a call for the second international hydrologic decades." Bulletin of the American Meteorological Society, Vol. 80, pp. 2043-2058 https://doi.org/10.1175/1520-0477(1999)080<2043:AAFLSH>2.0.CO;2
  12. Errico, R., Ohring, G., Derber, J., and Joiner, J. (2000). “NOAA-NASA-DoD Workshop on assimilation of satellite data.” Bulletin of the American Meteorological Society, Vol. 81, pp. 2457-2462 https://doi.org/10.1175/1520-0477(2000)081<2457:NNDWOS>2.3.CO;2
  13. Grecu, M., and Krajewski, W.F. (2001). “Rainfall forecasting using variational assimilation of radar data in numerical cloud model.” Advanced in Water Resources, Vol. 24, pp. 213-224 https://doi.org/10.1016/S0309-1708(00)00046-4
  14. Ha, E., North, G.R., Yoo, C., and Ha, K. (2002). “Evaluation of some ground truth designs for satellite estimates of rain rate.” Journal of Atmospheric and Oceanic Technology, Vol. 19, pp. 65-73 https://doi.org/10.1175/1520-0426(2002)019<0065:EOSGTD>2.0.CO;2
  15. Hoke, J.E., and Anthes, R.A. (1976). “The initialization of numerical models by a dynamicinitialization technique.” Monthly Weather Review, Vol. 104, pp. 1551-1556 https://doi.org/10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2
  16. Houser, P.R., Shuttleworth, W.J., Famiglietti, J.S., Gupta, H.V., Syed, K.H., and Goodrich, D.C. (1998). “Integration of soil moisture remote sensing and hydrologic modeling using data assimilation.” Vol. 34, pp. 3405-3420 https://doi.org/10.1029/1998WR900001
  17. Kalnay, E. (2003). Atmospherical modeling data assimilation and predictability, Cambridge university press, Cambridge
  18. Kuo, Y.H., Guo, Y.R., and Westwater, E.R. (1993). “Assimilation of precipitable water measurement into a mesoscale numerical model.” Monthly Weather Review, Vol. 121, pp. 1215-1238 https://doi.org/10.1175/1520-0493(1993)121<1215:AOPWMI>2.0.CO;2
  19. McLaughlin, D. (2002). “An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering.” Advances in Water Resources, Vol. 25, pp. 1275-1286 https://doi.org/10.1016/S0309-1708(02)00055-6
  20. North, G.R., Valdes, J.B., Ha, E., and Shen, S.S.P. (1994). “The ground-truth problem for satellite estimates of rainfall.” Journal of Atmospheric and Oceanic Technology, Vol. 11, pp. 1035-1041 https://doi.org/10.1175/1520-0426(1994)011<1035:TGTPFS>2.0.CO;2
  21. Seo, D.J. (1991). "On state estimation using remotely sensed data and ground measurements: An overview of some useful tools." Journal of the Korean Society of Remote Sensing, Vol. 7, pp.45-67 https://doi.org/10.1175/1520-0426(1994)011<1035:TGTPFS>2.0.CO;2
  22. Seo, D.J., Krajewski, W.F., and Bowles, D.S. (1990a). “Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments.” Water Resources Research, Vol. 26, pp. 469-477
  23. Seo, D.J., Krajewski, W.F., Azimi-Zonooz, A., and Bowles, D.S. (1990b). “Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 2. Results.” Water Resources Research, Vol. 26, pp. 915-924
  24. Sinclair, S., and Pegram, G. (2005). “Combining radar and rain gauge rainfall estimates using conditional merging.” Atmospheric Science Letters, Vol. 6, pp. 19-22 https://doi.org/10.1002/asl.85
  25. Stauffer, D.R., Seaman, N.L., and Binkowski, F.S. (1991). “Use of four-dimensional data assimilation in a limited-area mesoscale model part II: Effect of data assimilation within the planetary boundary layer.” Monthly Weather Review, Vol. 119, pp. 734-754 https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2
  26. Todini, E. (2001). “A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements.” Hydrology and Earth System Science, Vol. 5, pp. 187-199 https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2
  27. Yoo, C. (2002). “A ground validation problem of the remotely sensed soil moisture data.” Stochastic Environmental Research and Risk Assessment, Vol. 16, pp. 175-187 https://doi.org/10.1007/s00477-002-0092-6
  28. Yoo, C. (2002). 'A ground validation problem of the remotely sensed soil moisture data.' Stochastic Environmental Research and Risk Assessment, Vol. 16, pp. 175-187 https://doi.org/10.1007/s00477-002-0092-6

Cited by

  1. Comparison of Quantitative Precipitation Estimation Algorithms using Dual Polarization Radar Measurements in Korea vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.105
  2. Runoff Simulation of An Urban Drainage System Using Radar Rainfall Data vol.15, pp.3, 2013, https://doi.org/10.17663/JWR.2013.15.3.413
  3. Evaluation of Error Indices of Radar Rain Rate Targeting Rainfall-Runoff Analysis vol.21, pp.9, 2016, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001393
  4. The Adjustment of Radar Precipitation Estimation Based on the Kriging Method vol.34, pp.1, 2013, https://doi.org/10.5467/JKESS.2013.34.1.13
  5. Quantification of Error in Reflectivity for Improving the Accuracy of the Radar Rainfall Estimated from Single Polarization Radar vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.255