Effects of Electrical Stimulation on Wound Healing and Skin Mast Cells in Streptozotocin-Induced Diabetic Rats

스트렙토조토신 유도 당뇨 흰쥐에서 전기자극이 상처치유와 피부 비만세포에 미치는 영향

  • Jekal, Seung-Joo (Department of Clinical Laboratory Science, Wonkwang Health Science College) ;
  • Lee, Kyung-Sun (Department of Clinical Laboratory Science, Wonkwang Health Science College) ;
  • Chung, Ok-Bong (Department of Clinical Pathology, Jeonju Kijeon College) ;
  • Lee, Jae-Hyoung (Department of Physical Therapy, Wonkwang Health Science College)
  • Published : 2008.12.31

Abstract

The aim of this study was to investigate the effect of electrical stimulation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Thirty male Sprague-Dawley rats were divided into three groups : incision (control), diabetes+incision (diabetes) and diabetes + incision + electrical stimulation (D/ES). Diabetes was induced in rats by streptozotocin (STZ) injection (60 mg/kg, one time) and 20 mm length incision wounds were created on the back after shaving hair. The electrical stimulation rats were treated with a current intensity of 30~50 V at 120 pps and $140{\mu}s$ for 10 days from 3 days after STZ injection. The lesion and adjacent skin tissues were fixed with 10% buffered formalin, embedded with paraffin. For wound healing analysis, hematoxylin-eosin (HE) and picrosirius red staining were performed. Mast cells (MC) were stained with toluidine blue (pH 0.5) and quantified at ${\times}200$ using a light microscope. The density of keratinocyte proliferation and microvessels in skin tissues were analyzed using a computerized image analysis system on sections immunostained with proliferative cell nuclear antigen (PCNA) and ${\alpha}$-smooth muscle actin (${\alpha}$-SMA), respectively. The results showed that the wound healing rate, collagen density and neoepidermis thickness, density of PCNA-positive cells and density of ${\alpha}$-SMA-positive vessels were significantly higher in D/ES rats than in diabetic rats. The density of MCs and degranulated MCs in D/ES rats were also significantly higher than those in diabetic rats. These findings suggest that the electrical stimulation may promote the tissue repair process by accelerating collagen production, keratinocyte proliferation and angiogenesis in the diabetic rats, and MCs are required for wound healing of skin in rats.

Keywords