DOI QR코드

DOI QR Code

Stability for a Holling Type IV Food Chain System With Impulsive Perturbations

  • Baek, Hunki (Department of Mathematics, Kyungpook National University) ;
  • Do, Young-Hae (Department of Mathematics, Kyungpook National University)
  • Received : 2008.06.17
  • Published : 2008.09.30

Abstract

We investigate a three species food chain system with a Holling type IV functional response and impulsive perturbations. We find conditions for local and global stabilities of prey(or predator) free periodic solutions by applying the Floquet theory and the comparison theorems.

Keywords

References

  1. R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  2. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993.
  3. J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36(1997), 149-168. https://doi.org/10.1007/s002850050095
  4. C. Cosner, D. L. DeAngelis, Effects of spatial grouping on the functional response of predators, Theoretical Popuation Biology, 56(1999), 65-75. https://doi.org/10.1006/tpbi.1999.1414
  5. H. I. Freedman and R. M. Mathsen, Persistence in predator-prey systems with ratiodependent predator influence, Bulletin of Math. Biology, 55(4)(1993), 817-827. https://doi.org/10.1007/BF02460674
  6. M. P. Hassell and G. C. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature, 223(1969), 1133-1136. https://doi.org/10.1038/2231133a0
  7. S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
  8. K. Kitamura, K. Kashiwagi, K.-i. Tainaka, T. Hayashi, J. Yoshimura, T. Kawai and T. Kajiwara, Asymmetrical effect of migration on a prey-predator model, Physics Letters A, 357(2006), 213-217. https://doi.org/10.1016/j.physleta.2006.04.067
  9. V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.
  10. B. Liu, Z. Teng and L. Chen, Analsis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. of Comp. and Appl. Math., 193(1)(2006), 347-362 https://doi.org/10.1016/j.cam.2005.06.023
  11. B. Liu, Y. J. Zhang, L. S. Chen and L. H. Sun, The dynamics of a prey-dependent consumption model concerning integrated pest management, Acta Mathematica Sinica, English Series, 21(3)(2005), 541-554. https://doi.org/10.1007/s10114-004-0476-2
  12. X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals, 16(2003), 311-320. https://doi.org/10.1016/S0960-0779(02)00408-3
  13. P. Georgescu and G. Morosanu, Impulsive perturbations of a three-trophic prey-dependent food chain system, Mathematical and Computer Modeling(2008), doi:10.1016/j.mcm.2007.12.006.
  14. S. Ruan and D. Xiao, Global analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
  15. E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
  16. G. T. Skalski and J. F. Gilliam, Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
  17. W. Wang, H. Wang and Z. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos Solitons and Fractals, 37(2008), 438-443. https://doi.org/10.1016/j.chaos.2006.09.013
  18. S. Zhang and L. Chen, Chaos in three species food chain system with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 73-83. https://doi.org/10.1016/j.chaos.2004.07.014
  19. S. Zhang and L. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 1269-1278. https://doi.org/10.1016/j.chaos.2004.09.051
  20. S. Zhang, F. Wang and L. Chen, A food chain model with impulsive perturbations and Holling IV functional response, Chaos, Solitons and Fractals, 26(2005), 855-866. https://doi.org/10.1016/j.chaos.2005.01.053
  21. Y. Zhang, B. Liu and L. Chen, Extinction and permanence of a two-prey one-predator system with impulsive effect, Mathematical Medicine and Biology, 20(2003), 309-325. https://doi.org/10.1093/imammb/20.4.309

Cited by

  1. Impulsive Perturbations of a Three-Species Food Chain System with the Beddington-DeAngelis Functional Response vol.2012, 2012, https://doi.org/10.1155/2012/418564
  2. Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and Impulsive Control Strategy vol.2013, 2013, https://doi.org/10.1155/2013/358930
  3. Extinction and Permanence of a Holling I Type Impulsive Predator-prey Model vol.49, pp.4, 2009, https://doi.org/10.5666/KMJ.2009.49.4.763
  4. Seasonal Effects on a Beddington-DeAngelis Type Predator-Prey System with Impulsive Perturbations vol.2009, 2009, https://doi.org/10.1155/2009/695121
  5. DYNAMICS OF A STAGE-STRUCTURED PREDATOR-PREY MODEL CONCERNING IMPULSIVE CONTROL STRATEGY vol.17, pp.04, 2009, https://doi.org/10.1142/S0218339009003046
  6. Permanence and stability of an Ivlev-type predator–prey system with impulsive control strategies vol.50, pp.9-10, 2009, https://doi.org/10.1016/j.mcm.2009.07.007