References
- R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
- D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993.
- J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36(1997), 149-168. https://doi.org/10.1007/s002850050095
- C. Cosner, D. L. DeAngelis, Effects of spatial grouping on the functional response of predators, Theoretical Popuation Biology, 56(1999), 65-75. https://doi.org/10.1006/tpbi.1999.1414
- H. I. Freedman and R. M. Mathsen, Persistence in predator-prey systems with ratiodependent predator influence, Bulletin of Math. Biology, 55(4)(1993), 817-827. https://doi.org/10.1007/BF02460674
- M. P. Hassell and G. C. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature, 223(1969), 1133-1136. https://doi.org/10.1038/2231133a0
- S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
- K. Kitamura, K. Kashiwagi, K.-i. Tainaka, T. Hayashi, J. Yoshimura, T. Kawai and T. Kajiwara, Asymmetrical effect of migration on a prey-predator model, Physics Letters A, 357(2006), 213-217. https://doi.org/10.1016/j.physleta.2006.04.067
- V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.
- B. Liu, Z. Teng and L. Chen, Analsis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. of Comp. and Appl. Math., 193(1)(2006), 347-362 https://doi.org/10.1016/j.cam.2005.06.023
- B. Liu, Y. J. Zhang, L. S. Chen and L. H. Sun, The dynamics of a prey-dependent consumption model concerning integrated pest management, Acta Mathematica Sinica, English Series, 21(3)(2005), 541-554. https://doi.org/10.1007/s10114-004-0476-2
- X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals, 16(2003), 311-320. https://doi.org/10.1016/S0960-0779(02)00408-3
- P. Georgescu and G. Morosanu, Impulsive perturbations of a three-trophic prey-dependent food chain system, Mathematical and Computer Modeling(2008), doi:10.1016/j.mcm.2007.12.006.
- S. Ruan and D. Xiao, Global analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
- E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
- G. T. Skalski and J. F. Gilliam, Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
- W. Wang, H. Wang and Z. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos Solitons and Fractals, 37(2008), 438-443. https://doi.org/10.1016/j.chaos.2006.09.013
- S. Zhang and L. Chen, Chaos in three species food chain system with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 73-83. https://doi.org/10.1016/j.chaos.2004.07.014
- S. Zhang and L. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 1269-1278. https://doi.org/10.1016/j.chaos.2004.09.051
- S. Zhang, F. Wang and L. Chen, A food chain model with impulsive perturbations and Holling IV functional response, Chaos, Solitons and Fractals, 26(2005), 855-866. https://doi.org/10.1016/j.chaos.2005.01.053
- Y. Zhang, B. Liu and L. Chen, Extinction and permanence of a two-prey one-predator system with impulsive effect, Mathematical Medicine and Biology, 20(2003), 309-325. https://doi.org/10.1093/imammb/20.4.309
Cited by
- Impulsive Perturbations of a Three-Species Food Chain System with the Beddington-DeAngelis Functional Response vol.2012, 2012, https://doi.org/10.1155/2012/418564
- Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and Impulsive Control Strategy vol.2013, 2013, https://doi.org/10.1155/2013/358930
- Extinction and Permanence of a Holling I Type Impulsive Predator-prey Model vol.49, pp.4, 2009, https://doi.org/10.5666/KMJ.2009.49.4.763
- Seasonal Effects on a Beddington-DeAngelis Type Predator-Prey System with Impulsive Perturbations vol.2009, 2009, https://doi.org/10.1155/2009/695121
- DYNAMICS OF A STAGE-STRUCTURED PREDATOR-PREY MODEL CONCERNING IMPULSIVE CONTROL STRATEGY vol.17, pp.04, 2009, https://doi.org/10.1142/S0218339009003046
- Permanence and stability of an Ivlev-type predator–prey system with impulsive control strategies vol.50, pp.9-10, 2009, https://doi.org/10.1016/j.mcm.2009.07.007