DOI QR코드

DOI QR Code

Development of Supercapacitors Using Porous Carbon Materials Synthesized from Plant Derived Precursors

  • Received : 2008.03.26
  • Accepted : 2008.08.25
  • Published : 2008.09.30

Abstract

Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.

Keywords

References

  1. Changzhou, Y.; Xiaogang, Z.; Wu. Q.; Bo, G. Solid State Ionics 2006, 177, 1237. https://doi.org/10.1016/j.ssi.2006.04.052
  2. Kalpana , D.; Omkumar, K.S.; Suresh Kumar, S.; Renganathan, N.G. Electrochimica Acta 2006, 52(3), 1309. https://doi.org/10.1016/j.electacta.2006.07.032
  3. Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Power Sources 2006, 153(1), 191. https://doi.org/10.1016/j.jpowsour.2005.04.009
  4. Miura, N.; Oonishi S.; Rajendra Prasad, K. Electrochem. and Solid State Letts. 2004, 7(8), A 247. https://doi.org/10.1149/1.1763773
  5. Xiao, Q.; Zhou, X. Electrochimica Acta 2003, 48(5), 575. https://doi.org/10.1016/S0013-4686(02)00727-2
  6. Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Appl. Phys. Lett. 2000, 77(15), 2421. https://doi.org/10.1063/1.1290146
  7. Babel, K.; Jurewicz, K. J. Phys. and Chem. Solids 2004, 65(2-3), 275. https://doi.org/10.1016/j.jpcs.2003.08.023
  8. Pico, F.; Rojo, J. M.; Sanjuan, M. L.; Anson, A.; Benito, A. M.; Callejas, M. A.; Maser, W. K.; Martinez, M. T. J. Electrochem. Soc. 2004, 151(6), A831. https://doi.org/10.1149/1.1738678
  9. Chen, Q.-L.; Xue, K.-H.; Shen, W.; Tao, F.-F.; Yin, S.-Y.; Xu, W. Electrochemica Acta 2004, 49(24), 4157. https://doi.org/10.1016/j.electacta.2004.04.010
  10. Hu, C.-C.; Chen, W.-C. Electrochimica Acta 2004, 49(21), 3469. https://doi.org/10.1016/j.electacta.2004.03.017
  11. Yuan, A.; Zhang, Q. Electrochem. Comm. 2006, 8(7), 1173. https://doi.org/10.1016/j.elecom.2006.05.018
  12. Subramanian, V.; Zhu, H.; Wei, B. J. Power Sources 2006, 159(1), 361. https://doi.org/10.1016/j.jpowsour.2006.04.012
  13. Machefaux, E.; Brousse, T.; Belanger, D.; Guyomard, D. J. Power Sources 2007, 165(2), 651. https://doi.org/10.1016/j.jpowsour.2006.10.060
  14. Sharon, M.; Soga, T.; Afre, R.; Sathiyamoorthy, D.; Dasgupta, K.; Bhardwaj, S.; Jaybhaye, S. Int. J. Hydrogen Energy 2007, 32, 4238. https://doi.org/10.1016/j.ijhydene.2007.05.038