DOI QR코드

DOI QR Code

Optimal Two-Stage Periodic Inspection Policy for Maintaining Storage Reliability

저장신뢰도 유지를 위한 최적 2단계 주기적 검사정책

  • Cho, Yong-Suk (Tactical Systems PEO, Agency for Defense Development) ;
  • Lee, Joo-Ho (Department of Information & Statistics, Chungnam National University)
  • 조용석 (국방과학연구소 전술유도무기체계개발단) ;
  • 이주호 (충남대학교 정보통계학과)
  • Published : 2008.05.30

Abstract

In this thesis we propose a two-stage periodic inspection model for maintaining the reliability of a system in long-term storage. There are two types of tests available; a fallible test and an error-free test. The system is overhauled at detection of failure or when the storage reliability after inspection becomes less than or equal to the prespecified value. The expected cost per unit time until overhaul is derived and a procedure for minimizing the expected cost is suggested. The two-stage periodic inspection model is compared with the one-stage periodic inspection model for various parameters of the cost function when the failure time follows exponential and Weibull distributions. The proposed model is then applied to an existing missile system for comparison with the current inspection policy.

본 연구에서는 장기간 보관 중인 장비의 신뢰도를 유지하기 위한 2단계 주기적 검사모형을 제안하였다. 제안된 모형은 불완전한 간이검사와 완전한 정밀검사를 단계적으로 사용하여 고장이 발견되거나 검사 후 저장신뢰도가 미리 정해진 값 이하로 떨어질 때 장비에 대한 오버홀을 수행한다. 제안된 모형을 사용하여 오버홀까지의 단위시간당 기대비용을 유도하고 이를 최소화하기 위한 절차를 구하였으며, 고장시간이 지수분포 및 와이블분포를 따를 경우 제안된 모형을 1단계 주기적 검사모형과 비용함수의 다양한 모수값에 대하여 비교하였다. 또한 실제 운용 중인 유도탄 시스템에 제안된 검사정책을 적용하여 현재 사용 중인 검사정책과의 비교를 수행하였다.

Keywords

References

  1. 박대현, 조용석. (2001). 신궁체계 장입유도탄 저장신뢰도 예측 (PCM결과 활용), MADC-516-010237
  2. Barlow, R. E. and Proschan, F. (1965). Mathematical Theory of Reliability, John Wiley & Sons, New York
  3. Cottrell, D. F., Gagnier, T. R., Kimball, E. W. and Kirejczyk, T. E. (1974). Effects of Dormancy on Nonelectronic Components and Materials, RADC-TR-74-269 (AD/A- 002 838)
  4. Ito, K. and Nakagawa, T. (1992). Optimal inspection policies for a system in storage, Computers & Mathematics with Applications, 24, 87-90 https://doi.org/10.1016/0898-1221(92)90232-7
  5. Ito, K. and Nakagawa, T. (1995). An optimal inspection policy for a storage system with high reliability, Microelectronics Reliability, 36, 875-882
  6. Ito, K. and Nakagawa, T. (2000). Optimal inspection policies for a storage system with degradation at periodic tests, Mathematical and Computer Modeling, 31, 191-195 https://doi.org/10.1016/S0895-7177(00)00087-X
  7. Ito, K., Nakagawa, T. and Nishi, K. (1995). Extended optimal inspection polices for a system in storage, Mathematical and Computer Modeling, 22, 83-87
  8. Martinez, E. C. (1984). Storage reliability with periodic test, In Proceedings Annual Reliability and Maintainability Symposium, 181-185
  9. Parmigiani, G. (1993). Scheduling inspections in reliability, In Advances in Reliability (ed: Basu, A. P.), 303-319, North-Holland, Amsterdam
  10. Ross, S. M. (1983). Stochastic Process, John Wiley & Sons, New York
  11. Xie, M., Zhang, Y. T., and Zhao, M. (1995). A study of a storage reliability estimation problem, Quality and Reliability Engineering International, 11, 123-127 https://doi.org/10.1002/qre.4680110208

Cited by

  1. A Study on the Storage Reliability Determination Model for One-shot System vol.38, pp.1, 2013, https://doi.org/10.7737/JKORMS.2013.38.1.001
  2. Reliability Analysis for One-Shot Systems with Periodic Inspection vol.42, pp.1, 2016, https://doi.org/10.7232/JKIIE.2016.42.1.020