Effective Antibacterial Action of Tat (47-58) by Increased Uptake into Bacterial Cells in the Presence of Trypsin

  • Jung, Hyun-Jun (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Jeong, Kyu-Shik (College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Dong-Gun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • Published : 2008.05.31

Abstract

In a previous study, we found an antifungal effect on human pathogenic fungi by the cell-penetrating peptide Tat (47-58) derived from HIV-1. Tat (47-58) immediately entered into the fungal nucleus and affected some physiological changes on the intracellular condition. In this study, Tat (47-58) showed a broad spectrum of antibacterial activity against pathogenic bacteria including bacterial clinical isolates. To improve resistance against proteases for use in vivo, we synthesized an analog of Tat (47-58) by substituting the L-amino acid for the D-amino acid. The D-enantiomer of Tat (47-58) also exhibited a broad spectrum of antibacterial activity at almost the same level of L-Tat (47-58) concentration. Unlike L-Tat (47-58), D-Tat (47-58) showed a significant proteolytic resistance against all proteases tested and antimicrobial activities in the presence of trypsin. Moreover, D-Tat (47-58) inhibited MRSA infection in human HeLa cells whereas L-Tat (47-58) partially allowed MRSA infection, and the results were due to the proteolytic resistance of D-Tat (47-58).

Keywords

References

  1. Bechinger, B. 1997. Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211 https://doi.org/10.1007/s002329900201
  2. Bessin, Y., N. Saint, L. Marri, D. Marchini, and G. Molle. 2004. Antibacterial activity and pore-forming properties of ceratotoxins: A mechanism of action based on the barrel stave model. Biochim. Biophys. Acta 1667: 148-156 https://doi.org/10.1016/j.bbamem.2004.09.011
  3. Blondelle, S. E. and R. A. Houghten. 1992. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31: 12688-12694 https://doi.org/10.1021/bi00165a020
  4. Boman, H. G., B. Agerberth, and A. Boman. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61: 2978-2984
  5. Brugidou, J., C. Legrand, J. Mery, and A. Rabie. 1995. The retro-inverso form of a homeobox-derived short peptide is rapidly internalized by cultured neurons: A new basis for an efficient intracellular delivery system. Biochem. Biophys. Res. Commun. 214: 685-693 https://doi.org/10.1006/bbrc.1995.2340
  6. Chen, Y., A. I. Vasil, L. Rehaume, C. T. Mant, J. L. Burns, M. L. Vasil, R. E. W. Hancock, and R. S. Hodges. 2006. Comparison of biophysical and biologic properties of alphahelical enantiomeric antimicrobial peptides. Chem. Biol. Drug Des. 67: 162-173 https://doi.org/10.1111/j.1747-0285.2006.00349.x
  7. Christensen, B., J. Fink, R. B. Merrifield, and D. Mauzerall. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85: 5072-5076
  8. Fjell, C. D., R. E. W. Hancock, and A. Cherkasov. 2007. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23: 1148-1155 https://doi.org/10.1093/bioinformatics/btm068
  9. Hancock, R. E. W. and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323
  10. Hancock, R. E. W. and R. Lehrer. 1998. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 16: 82-88 https://doi.org/10.1016/S0167-7799(97)01156-6
  11. Helmerhorst, E. J., I. M. Reijnders, W. V. Hof, E. C. I. Veerman, and A. V. N. Amerongen. 1999. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett. 449: 105-110 https://doi.org/10.1016/S0014-5793(99)00411-1
  12. Ishitsuka, Y., D. S. Pham, A. J. Waring, R. I. Lehrer, and K. Y. Lee. 2006. Insertion selectively of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing. Biochem. Biophys. Acta 1758: 1450-1460 https://doi.org/10.1016/j.bbamem.2006.08.001
  13. Izadpanah, A. and R. L. Gello. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52: 381-390 https://doi.org/10.1016/j.jaad.2004.08.026
  14. Jung, H. J., Y. Park, K. S. Hahm, and D. G. Lee. 2006. Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochem. Biophys. Res. Commun. 345: 222-228 https://doi.org/10.1016/j.bbrc.2006.04.059
  15. Jung, H. J., Y. B. Seu, and D. G. Lee. 2007. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J. Microbiol. Biotechnol. 17: 1324-1329
  16. Lindgren, M., M. Hallbrink, A. Prochiantz, and u. Langel. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21: 99-103 https://doi.org/10.1016/S0165-6147(00)01447-4
  17. National Committee for Clinical Laboratory Standards. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th Ed. Approved standard M7- A6. National Committee for Clinical Laboratory Standards, Wayne, PA
  18. Otvos, Jr. L. 2005. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11: 697-706 https://doi.org/10.1002/psc.698
  19. Palm, C. V., M. Jayamanne, M. Kjellander, and M. Hallbrink. Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochem. Biophys. Acta 1768: 1769-1776
  20. Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipids membranes. Biochemistry 31: 12416-12423 https://doi.org/10.1021/bi00164a017
  21. Ruben, S., A. Perkins, R. Purcell, K. Joung, R. Sia, R. Burghoff, W. A. Haseltine, and C. A. Rosen. 1989. Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol. 63: 1-8
  22. Saint, N., H. Cadiou, Y. Bessin, and G. Molle. 2002. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta 1564: 359-364 https://doi.org/10.1016/S0005-2736(02)00470-4
  23. Shimoda, M., K. Ohki, Y. Shimamoto, and O. Kohashi. 1995. Morphology of defensin-treated Staphylococcus aureus. Infect. Immun. 63: 2886-2891
  24. Strebel, K. 2003. Virus-host interactions: Role of HIV proteins Vif, Tat, and Rev. AIDS 17: S25-S34 https://doi.org/10.1097/00002030-200317004-00003
  25. Subbalakshmi, C. and N. Sitaram. 1998. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160: 91-96 https://doi.org/10.1111/j.1574-6968.1998.tb12896.x
  26. Subbalakshmi, C., R. Nagaraj, and N. Sitaram. 2001. Biological activities of retro and diastereo analogs of a 13-residue peptide with antimicrobial and hemolytic activities. J. Pept. Res. 57: 59-67 https://doi.org/10.1034/j.1399-3011.2001.00800.x
  27. Sugiarto, H. and P. Yu. 2004. Avian antimicrobial peptides: The defense role of $\beta$-defensins. Biochem. Biophys. Res. Commun. 323: 721-727 https://doi.org/10.1016/j.bbrc.2004.08.162
  28. Sugiarto, H. and P. L. Yu. 2007. Mechanisms of action of ostrich beta-defensins against Escherichia coli. FEMS Microbiol. Lett. 270: 195-200 https://doi.org/10.1111/j.1574-6968.2007.00642.x
  29. Sung, W. S., I. S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804
  30. Ulvatne, H., O. Samuelsen, H. H. Haukland, M. Kramer, and L. H. Vorland. 2004. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett. 237: 377-384
  31. Yang, J. Y., S. Y. Shin, S. S. Lim, K. S. Hahm, and Y. Kim. 2006. Structure and bacterial cell selectivity of a fish-derived antimicrobial peptide, pleurocidin. J. Microbiol. Biotechnol. 16: 880-888
  32. Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huand. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485 https://doi.org/10.1016/S0006-3495(01)75802-X
  33. Yoon, J., Y. Jung, S. Hong, S. Kim, M. Shin, D. Lee, W. Shin, W. Min, and S. Paik. 2004. Characteristics of HIV-Tat protein transduction domain. J. Microbiol. 42: 328-335