Isolation and Characterization of Comprehensive Polychlorinated Biphenyl-Degrading Bacterium, Enterobacter sp. LY402

  • Jia, Ling-Yun (Department of Bioscience and Biotechnology, Dalian University of Technology) ;
  • Zheng, Ai-Ping (Department of Bioscience and Biotechnology, Dalian University of Technology) ;
  • Xu, Li (Department of Bioscience and Biotechnology, Dalian University of Technology) ;
  • Huang, Xiao-Dong (Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, and College of Environmental Science, Dalian Maritime University) ;
  • Zhang, Qing (Advanced Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Yang, Feng-Lin (Department of Bioscience and Biotechnology, Dalian University of Technology)
  • Published : 2008.05.31

Abstract

A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterohacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6-CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and dichlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.

Keywords

References

  1. Bedard, D. L. and M. I. Harbel. 1990. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyl by eight bacterial strains. Microb. Ecol. 20: 87-102 https://doi.org/10.1007/BF02543870
  2. Bedard, D. L., M. L. Haberl, R. J. May, and M. J. Brennan. 1987. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1103-1112
  3. Bedard, D. L., R. Unterman, L. H. Bopp, M. J. Brennan, M. L. Haberl, and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761-768
  4. Bedard, D. L., R. E. Wagner, M. J. Brennan, M. L. Haberl, and J. F. Brown Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094-1102
  5. Bopp, L. H. 1986. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. Biotechnol. 1: 23-29
  6. Erickson, B. D. and F. J. Mondello. 1993. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl. Environ. Microbiol. 59: 3858-3862
  7. Fava, F., S. Zappoli, L. Marchetti, and L.Morselli. 1991. Biodegradation of chlorinated biphenyls (Fenclor 42) in batch cultures with mixed and pure aerobic cultures. Chemosphere 22: 3-14 https://doi.org/10.1016/0045-6535(91)90259-G
  8. Furukawa, K. 1994. Genetic systems in soil bacteria for the degradation of polychlorinated biphenyls, pp. 33-46. In Chaudry, G. R. (ed.), Biological Degradation and Bioremediation of Toxic Chemicals. Dioscorides Press, Portland, Ore
  9. Furukawa, K. and T. Miyazaki. 1986. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392-398 https://doi.org/10.1128/jb.166.2.392-398.1986
  10. Gibson, D. T., D. L. Cruden, J. D. Haddock, G. J. Zylstra, and J. M. Brand. 1993. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J. Bacteriol. 175: 4561-4564 https://doi.org/10.1128/jb.175.14.4561-4564.1993
  11. Hellery, B. R., J. E. Girard, M. M. Schantz, and S. A. Wise. 1997. Characterization of three Aroclor mixtures using a new cyanobiphenyl stationary phase. Fresenius J. Anal. Chem. 357: 723-731 https://doi.org/10.1007/s002160050239
  12. Jones, K. C. and P. de Voogt. 1999. Persistent organic pollutants (POPs): State of the science. Environ. Pollu. 100: 209-221 https://doi.org/10.1016/S0269-7491(99)00098-6
  13. Kim, J. H., S. K. Choi, M. K. Park, Y. H. Kim, S. K. Suh, C. J. Woo, and H. D. Park. 1996. Isolation and characterization of Pseudomonas sp. P2 degrading polychlorinated biphenyls (PCBs). J. Microbiol. Biotechnol. 6: 167-172
  14. Page, R. D. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 10: 41-43
  15. Richard, C. 1984. Enterobacter, pp. 465-471. In N. R. Krieg and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology. Vol. 1. Williams and Wilkins, Baltimore, MD
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  17. Sakai, M., S. Ezaki, N. Suzuki, and R. Kurane. 2005. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl. Microbiol. Biotechnol. 68: 111-116 https://doi.org/10.1007/s00253-004-1848-3
  18. Seto, M., K. Kimbara, M. Shimura, T. Hatta, M. Fukuda, and K. Yano. 1995. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61: 3353-3358
  19. Shimura, M., G. Mukerjee-Dhar, K. Kimbara, H. Nagato, H. Kiyohara, and T. Hatta. 1999. Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol. Lett. 178: 87-93 https://doi.org/10.1111/j.1574-6968.1999.tb13763.x
  20. Sierra, I., J. L. Valera, M. L. Marina, and F. Laborda. 2003. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere 53: 609-618 https://doi.org/10.1016/S0045-6535(03)00418-1
  21. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  22. Zhang, Q., X. Liang, J. Chen, P. Lu, A. Yediler, and A. Kettrup. 2002. Correct identification of polychlorinated biphenyls in temperature-programmed GC with ECD detection. Anal. Bioanal. Chem. 374: 93-102 https://doi.org/10.1007/s00216-002-1430-8