DOI QR코드

DOI QR Code

Growth of Vertically Aligned CNTs with Ultra Thin Ni Catalysts

  • Ryu, Je-Hwang (Department of Information Display, KyungHee University) ;
  • Yu, Yi-Yin (Department of Information Display, KyungHee University) ;
  • Lee, Chang-Seok (Department of Information Display, KyungHee University) ;
  • Jang, Jin (Department of Information Display, KyungHee University) ;
  • Park, Kyu-Chang (Department of Information Display, KyungHee University) ;
  • Kim, Ki-Seo (Department of Physics, KyungHee University)
  • Published : 2008.04.30

Abstract

We report on the growth mechanism of vertically aligned carbon nanotubes (VACNTs) using ultra thin Ni catalysts and direct current plasma enhanced chemical vapor deposition (PECVD) system. The CNTs were grown with -600 V bias to substrate electrode and catalyst thickness variation of 0.07 nm to 3 nm. The CNT density was reduced with catalyst thickness reduction and increased growth time. Cone like CNTs were grown with ultra thin Ni thickness, and it results from an etch of carbon network by reactive etchant species and continuous carbon precipitation on CNT walls. Vertically aligned sparse CNTs can be grown with ultra thin Ni catalyst.

Keywords

References

  1. S. Iijima, "Helical microtubules of graphitic carbon", Nature, Vol. 354, p. 56, 1991 https://doi.org/10.1038/354056a0
  2. Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, and T. Shimojo, "Field emission from carbon nanotubes and its application to cathode ray tube lighting elements", Appl. Surf. Sci., Vol. 146, p. 305, 1999 https://doi.org/10.1016/S0169-4332(99)00059-8
  3. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, "Large-scale synthesis of aligned carbon nanotubes", Science, Vol. 274, p. 1701, 1996 https://doi.org/10.1126/science.274.5293.1701
  4. M. A. Guillorn, A. V. Melechko, V. I. Merkulov, D. K. Hensley, M. L. Simpson, and D. H. Lowndes, "Self-aligned gated field emission devices using single carbon nanofiber cathodes", Appl. Phys. Lett., Vol. 81, p. 3660, 2002 https://doi.org/10.1063/1.1517718
  5. J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern, and A. Chatelain, "Tuning the field emission properties of patterned carbon nanotube films", Adv. Mat., Vol. 13, p. 184, 2000 https://doi.org/10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I
  6. W. I. Milne, K. B. K Teo, M. Chhowalla, G. A. J. Amaratunga, D. Pribat, P. Legagneux, G. Pirio, V. T.Binh, and V. Semet, "Electron emission from arrays of carbon nanotubes/fibres", Curr. Appl. Phys., Vol. 2, p. 509, 2002 https://doi.org/10.1016/S1567-1739(02)00166-9
  7. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, "Synthesis of large arrays of well-aligned carbon nanotubes on glass", Science, Vol. 282, p. 1105, 1998 https://doi.org/10.1126/science.282.5391.1105
  8. Y. Tu, Z. P. Hung, D. Z. Wang, J. G. Wen, and Z. F. Ren, "Growth of aligned carbon nanotubes with controlled site density", Appl. Phys. Lett., Vol. 80, p. 4018, 2002 https://doi.org/10.1063/1.1482790
  9. C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, "Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition", Appl. Phys. Lett., Vol. 77, p. 2767, 2000 https://doi.org/10.1063/1.1319529
  10. K. C. Park, S. H. Lim, J. H. Moon, H. S. Yoon, D. Pribat, Y. Bonnassieux, and J. Jang, "Bias polarity effect on the growth of CNTs by triode DC-PECVD", J. Kor. Phys. Soc., Vol. 45, p. S833, 2004
  11. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, "Shaping carbon nanostructures by controlling the synthesis process", Appl. Phys. Lett., Vol. 79, p. 1178. 2001 https://doi.org/10.1063/1.1395517