Deposition of Solar Selective Coatings for High Temperature Applications

고온용 태양 선택흡수막의 제작

  • Published : 2008.02.28

Abstract

Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.

Keywords

References

  1. K. D. Lee, W. C. Jung and J. K. Kim, Sol. Energy Mater. Sol. Cells 62, 63 (2000)
  2. J. C. Fan and P. M. Zavracky, Appl. Phys. Letter. 29, 478 (1977)
  3. H. G. Graighead and R. A. Buhrman, J. Vac. Sci. Technol. 15, 269 (1978)
  4. D. R. McKenzie, Appl. Phys. Lett. 34, 25 (1979)
  5. H. G. Graighead, R. Bartynski, R. A. Buhrman, L. Wojcik and A. J. Sievers, Sol. Energy Mater. 1, 105 (1979)
  6. D. M. Trotter and A. J. Sievers, Appl. Opt. 19, 711 (1980)
  7. G. A. Nyberg and R. A. Buhrman, Appl. Phys. Lett. 40, 129 (1982)
  8. G. A. Niklasson and C. G. Granqvist, Appl. Phys. Lett. 41, 773 (1982)
  9. G. A. Niklasson and C. G. Granqvist, J. Mater. Sci. Appl. Phys. 18, 3475 (1983)
  10. G. A. Niklasson and C. G. Granqvist, Appl. Phys. 55, 3382 (1984) https://doi.org/10.1063/1.333154
  11. J. A. Thornton and J. L. Lamb, Sol. Energy Mater. 9, 415 (1984)
  12. J. Blain, C. Le. Bel, R. G.Saint-Jacques and F. Rheault, J. Appl. Phys. 58, 490 (1985)
  13. W. Pekruhn, L. K. Thomas, I. Broser, A. Schroder and U. Wenning, Sol Energy Mater. 13, 199 (1986)
  14. J. Lafai, S. Berthier, C. Sella and T. K Vien, Vacuum 36, 125 (1986)
  15. L. K. Thomas and C. Tang, Sol. Energy Mater. 18, 117 (1989)
  16. T. S. Sathiaraj, R. Thangaraj and O. P. Agnihotri, Sol Energy Mater. 18, 343 (1989)
  17. F. Garnich and E. Sailer, Sol Energy Mater. 20, 81 (1990)
  18. C. M. Lampert, Theory and Modeling of Solar Materials, in Solar Collectors, Energy Storage, and Materials, ed. by F. D. Winter(The MIT Press Massachusetts), p. 904
  19. Q. C. Zhang, Sol Energy Mater. and Sol Cells 62, 63 (2000)
  20. J. A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes, 2nd ed (Wiley-Interscience, New York, 1991)
  21. G. Zajac, G. B. Smith and A. Ignatiev, J. Appl. Phys. 51, 5544 (1980)