Adaptability of Improved Wild Vine in Slopled Highland and It's Effect of Soil Conservation

개량머루의 고랭지 적응성과 토양보전 효과

  • Lee, Gye-Jun (National Institute of Crop Science, Highland Agriculture Research Center, RDA) ;
  • Lee, Jeong-Tae (National Institute of Crop Science, Highland Agriculture Research Center, RDA) ;
  • Yoon, Yeong-Nam (National Institute of Crop Science, Department of Functional Crop, RDA) ;
  • Jin, Yong-Ik (National Institute of Crop Science, Highland Agriculture Research Center, RDA) ;
  • Park, Chol-Soo (KT&G Central Research Institute) ;
  • Zhang, Yong-Seon (National Academy of Agricultural Science, RDA) ;
  • Joo, Jin-Ho (Kangwon National University) ;
  • Hwang, Seon-Woong (National Institute of Crop Science, Department of Rice and Winter Cereal Crop, RDA)
  • 이계준 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 이정태 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 윤영남 (국립식량과학원 기능성작물부) ;
  • 진용익 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 박철수 (KT&G 중앙연구원) ;
  • 장용선 (국립농업과학원) ;
  • 주진호 (강원대학교) ;
  • 황선웅 (국립식량과학원 벼맥류부)
  • Received : 2008.10.22
  • Accepted : 2008.12.13
  • Published : 2008.12.30

Abstract

Objective of this study was to evaluate the adaptation and the soil conservation effect of improved wild vine in sloped upland of highland about 600m from sea level in Korea. A mainly producing district of the improved wild vine in Korea was distributed 230m to 540m from sea level, and its rainfall ranged 1,200 to 1,700 mm. The lowest temperature was from -19.6 to $-25.4^{\circ}C$. Their soil texture was from sandy loam to clay loam, where drainage class was well drained and the contents of soil organic matter and total nitrogen in the improved wild vine's cultivation area were higher than those of Chinese cabbage's cultivation area in the highland. According to improved wild vine's cultivation methods, the amounts of soil erosion were 25.5,4.1, and $1.8MT\;ha^{-1}$ in clean culture, part sod + mulching, and nature sod, respectively. Those were below 30 to $80MT\;ha^{-1}$ of sloped upland at highland in Korea. The result suggests that it is possible to cultivate the improved wild vine over wintering at 600m of highland above the sea level. We can substitute the improved wild vine for Chinese cabbage in the highland for soil conservation.

고랭지 경사밭에서 개량머루의 도입 적응성을 검토하기 위하여 대단위 개량머루 재배지의 실태를 조사하였고 토양보전 효과를 평가하기 위하여 개량머루 재배방법별 배추재배지 토양과 비교 검토하였다. 개량머루 주산지는 대부분 해발 230~540 m에 분포하고 있었으며, 강수량은 1,200~1,700mm이었다. 최저기온은 $-19.6{\sim}-25.4^{\circ}C$이었다. 토성은 사양토~식양토가 대부분으로 토양의 유기물 및 질소함량은 일반 밭토양에 비하여 높은 편이었다. 개량머루의 적응성은 해발 600 m 이상에서도 월동이 가능하여 고랭지채소 대체작물로 도입이 가능할 것으로 판단된다. 개량머루 재배방법에 따른 토양유실량은 연간 ha당 청경재배 25.MT, 부분초생 4.1MT, 초생피복 1.8MT으로 고랭지 채소재배지의 평균 토양유실량 $30{\sim}80MT\;ha^{-1}\;year^{-1}$에 비하여 훨씬 적었으며, 부분초생 및 초생피복을 동반한 개량머류의 재배법은 고랭지에서 토양유실량 및 양분유출량 경감효과가 매우 커서 개량머루는 고랭지 농가소득 향상 및 경사밭의 환경오염 부하량을 경감시킬 수 있는 하나의 방법이 될 수 있는 것으로 판단된다.

Keywords

References

  1. Bouyoucos, G. J. 1953. The Clay Ratio as a Criterion of Susceptibility of Soils to Erosion, J. Am. Soc. Agr. 27:738-741.
  2. Cho, B.O. 1999. Characterization of soil fertility and management practices of alpine soils under vegetable cultivations. Ph.D. Thesis. Kangwon National University, Chuncheon, Korea.
  3. Gangwondo Agricultural Research and Extension Services(GWARES). 1987, Survey of a variety of improved wild vain. Research report of Gangwondo Agricultural Research and Extension Services. Chuncheon, Korea.
  4. Gill, R., Burke, I.C., Milchunas, D.G., Lauenroth, W.K., 1999. Relationship between root biomass and soil organic matter pools in the short grass steppe of eastern Colorado. Ecosystems 2:226-236. https://doi.org/10.1007/s100219900070
  5. Grechi, I., Ph. Vivin, G. Hilbert, S. Milin, T. Robert, and J.-P. Gaudilere. 2007. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59:139-149. https://doi.org/10.1016/j.envexpbot.2005.11.002
  6. Hwang, S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun and M.H. Park. 2003. High temperature stress of summer Chinese cabbage in alpine region. Korean J. Soil Sci. Fert. 36(6):417-422.
  7. Jo, I.S., B.K. Hur, K.S. Ryu, K.T. Um, and S. J. Cho. 1987. Effects of soil conditioner treatments on the changes of soil physical properties and soybean yields. Korean J. Soil Sci. Fert. 20(1):29-34.
  8. Jung, P.K., M.H. Ko and K.T. Um. 1985. Discussion of Cropping Management Factor for Estimating Soil Loss. Korean J. Soil Sci. Fert. 32:31-38.
  9. Jung, Y.S., J.S. Shin and Y.H. Shin. 1976. Runoff and soil loss on newly reclaimed upland. Korean J. Soil Sci. Fert. 9:9-16.
  10. Kim, C.H. and Y.K. Kim. 2002. Present status of soilborne disease incidence and scheme for its integrated management in Korea. Res. Plant Dis. 8(3):146-161. https://doi.org/10.5423/RPD.2002.8.3.146
  11. La1. R. 1976. Soil Erosion on Alfisols in Western Nigeria. Effect of Rainfall Characteristics. Geoderma. 16:389-401. https://doi.org/10.1016/0016-7061(76)90003-3
  12. Lee, N.J., S.J. Oh, and P.K. Jung. 1998 . Soil loss and water runoff in a watershed in Yeoju. Korean J. Soil Sci. Fert. 31(3):211-215.
  13. National Institute of Agricultural Science and Technology(NIAST). 1999. Fertilizer Application Recommendation for Crops. Suwon, Korea.
  14. National Institute of Agricultural Science and Technology(NIAST). 2000. Methods of soil and crop plant analysis. Suwon, Korea.
  15. Park, H.S., Y.H Kwon, H.Y. Sang, D.V. Lim, G.P. Lee, E.M. Hong, S.J. Ahn, J.E. Cho and N.Y. Cho. 2007. Study on the investigation of functional constituents, the phylogenetic analysis and development of cultural technology in 'Kaeryangmeoroo'. 농촌진흥청 농업특정연구사업 연구보고서
  16. Rural Development Administration(RDA). 2003. Investigation and standard for agricultural experiment. Suwon, Korea.
  17. Tiago Pedreira dos Santos, Carlos M. Lopes, M. Lucilia Rodrigues, Claudia R. de Souza, Jorge M. Ricardo-da-Silva, Joao P. Maroco, Joao S. Pereira and M. Manuela Chaves. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae 112:321-330. https://doi.org/10.1016/j.scienta.2007.01.006
  18. Winkel T., S. Rambal, and T. Bariac. 1995. Spatial variation and temporal persistence of grapevine response to a soil texture gradient. Geoderma 68:67-78. https://doi.org/10.1016/0016-7061(95)00026-K
  19. Wischmeier, W.H. 1976. Use and Misuse of the Universal Soil Loss Equation. J. Soil & Water Cons. 31:5-9.
  20. Yang, J.E., B.O. Cho, Y.O. Shin and J.J. Kim. 2001. Fertility status in northeastern alpine soils of south Korea with cultivation of vegetable crops. Korean J. Soc. Soil Sci. Fert. 34(1):1-7.
  21. Zhu L., S. Wang, T. Yang, C. Zhang and W. Xu. 2006. Vine growth and nitrogen metabolism of 'Fujiminori' grapevines in response to root restriction. Scientia Horticulturae 107:143-149. https://doi.org/10.1016/j.scienta.2005.06.007