석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse

  • 김병곤 (한국지질자원연구원 광물자원연구본부) ;
  • 이계승 (한국지질자원연구원 광물자원연구본부) ;
  • 남철우 (한국지질자원연구원 광물자원연구본부) ;
  • 박종력 (한국지질자원연구원 광물자원연구본부)
  • Kim, Byoung-Gon (Korea Institute of Geoscience and Mineral Resources (KIGAM) Mineral Resource Research Division) ;
  • Lee, Gye-Seung (Korea Institute of Geoscience and Mineral Resources (KIGAM) Mineral Resource Research Division) ;
  • Nam, Chul-Woo (Korea Institute of Geoscience and Mineral Resources (KIGAM) Mineral Resource Research Division) ;
  • Park, Chong-Lyuck (Korea Institute of Geoscience and Mineral Resources (KIGAM) Mineral Resource Research Division)
  • 투고 : 2008.09.20
  • 심사 : 2008.11.20
  • 발행 : 2008.12.30

초록

토양개량방법의 하나로서 다공성 소성 과립체를 토양에 사용하는 방법을 적용하고자 하였다. 석탄폐석을 토양개량제의 원료로 사용하면 자열소성방법에 의해 저비용으로 과립체를 생산할 수 있고, 더불어 국내에 대량으로 적치되어 있는 석탄폐석을 활용할 수 있는 방안도 될 것임을 착안하여, 석탄폐석을 분쇄, 과립하고 자열소성방법으로 소성하여 과립(pellet)을 제조한 후 이의 다공체로서의 특성과 수분보유특성, pH등을 확인하였다. 고정탄소량이 약 28%인 시료 HCR을 고령토와 1:4의 무게비(20%)로 혼합하여 제조한 과립과 고정탄소가 약 9.66%인 LCR시료만을 사용한 과립을 자열소성한 결과, 별도의 가열에너지의 공급 없이 최대온도 $1200^{\circ}C$ 이하에서 연속적인 소성이 가능하였다. 이렇게제조한 과립체를 고령토만 사용하여 제조한 일반 소성 점토과립과 비교하였을 때 평균공극의 크기가 커졌음이 확인되었다. 이렇게 변화된 공극의 특성으로 인해 HCR과 LCR 과립의 내부에 흡수된 수분이 kaolin 과립에 비해 더 낮은 potential에서 방출되었고, 식물이 더 이용하기 쉬운 상태로 수분이 보유됨을 확인하였다. 그리고 자열소성한 과립은 kaolin 과립에 비해 높은 포장용수량과 유효수분의 값을 나타내었다. 포장용수량은 HCR과 LCR 과립이 각각 47.64, 38.43mL/100g값을 나타내었고, 유효수분의 양은 각각 38.39과 28.49mL/100g으로 나타났다. 자열소성한 과립의 pH는 6~8로서 토양에 활용이 가능함을 확인하였다.

Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

키워드

참고문헌

  1. Han, D.J., Rim, J.M., Lee, C.K., Lee, H.S. 1997. Fundamental study on adsorption capacity and utilization of coal waste as adsorbents, J. of KoSES, 2(2):61-72.
  2. Hong, S.W., Choi, Y.Y., Kim, B.G., Nam, C.W. You, Y.T. 2000. A study on the manufacturing of light weight aggregates process for structural concrete form fly-ash. Research Report of Ministry of knowledge Economy, Republic of Korea, Korea Institute of Geoscience & Mineral Resources, 1997C-CC02-P-03.
  3. Hyun, J.Y., Jeong, S.B., Chae, Y.B. 2005. Utilization of a coalpreparation refuse as a raw material for clay brick, J. of Korean Inst. Of Resources Recycling, 14(4):3-9.
  4. Hyun, J.Y., Jeong, S.B., Chae, Y.B., Kim, B.S. 2006. Development of fired clay bricks by coal-preparation refuse, J. of the ceramic Soc. of Japan, 114(5):404-407. https://doi.org/10.2109/jcersj.114.404
  5. Jerry G.R. 1982. Processing and material properties of energyefficient sintered coal refuse lightweight aggregate, Resources and Conservation, 9:119-129. https://doi.org/10.1016/0166-3097(82)90067-0
  6. Jo, I.S., Cho S.J. De Boodt, M. 1985. Effect of soil aggregate stability and wettability on soil loss, Korean J. Soil Sci. Fert., 18(4):373-377.
  7. Jung, S.B., Chae, Y.B., Kim, H.S. 2005. Effective utilization for the domestic coal refuse, Research Report of Ministry of knowledge Economy, Republic of Korea, Korea Institute of Geoscience & Mineral Resources, GAA2004006-2005(2).
  8. Kim, H.T., Kang, I.G. 2002. Forecasting of soil loss and preclusive method, J. of Korean Geo-Env. Sci., 3(1):30-40.
  9. Kim, S.Y., Lee, B.J. 2002. Soil loss, J. of Korean Geo-Env. Sci., 3(1):20-29.
  10. Liu X., Xiao Q., Fu Y., Hu F. 1996. Study on the thermal insulation material made from coal refuse, J. of Env. Sci. and health,?31(2):451-461. https://doi.org/10.1080/03601239609373006
  11. Nam, C.W., Hong, S.W., Choi, Y.Y., You, Y.T., Oh, C.B. 1999. A study on the manufacturing of light weight aggregates process from fly-ash with self-sintering, Workshop of recycling and application of resources and material. 24:249-259.
  12. Nimmo, J.R., Rubin, J., Hammermeister, D.P. 1987. Unsaturated flow in a centrifugal field: measurement of hydraulic conductivity and testing of Darcy's law, Water Resources Research, 23(1),:124-134. https://doi.org/10.1029/WR023i001p00124
  13. Nimmo, J.R. 1990. Experimental testing of transient unsaturated flow theory at low water content in a centrifugal field, Water Resources Research, 26(9),:1951-1960. https://doi.org/10.1029/WR026i009p01951
  14. Park, H.G., Kim, N.O., Choi, M.H. 1999. A study on the utilization of coal refuses as subbase and layer in road construction, J. of Korean Soc. of Civil Eng., 19(3-6):1143-1149.
  15. Song, T.Y., Ahn J.H., Kang H.J. 1967. Study on the utilization of coal-refuse: Fundamental studies on the production of fireproof material and lightweight aggregate from coal refuse (part 1), J. of Korean sci. of Geosystem Eng., 4:21-28.