Abstract
The influence of a moist atmosphere on $90^{\circ}$ domain switching under a sustained electric field, stress corrosion cracking of an indentation crack in water and an aggressive solution, and the relation between penetrating crack propagation and domain switching were studied using $BaTiO_3$ single crystal. The results indicate that enlarging the domain switching zone and crack propagation could be facilitated by a moist atmosphere or an aggressive solution due to the indentation residual stress. A moist atmosphere exerts remarkable influence upon the polarization of $BaTiO_3$ single crystal under a sustained electric field, and the surface energy of the c domain was much lower than that of the a domain. Domain switching ahead of a penetrating indentation crack tip was an essential requirement for crack propagation under constant stress.