High Temperature Behavior of Oxidized Mild Steel in Dry and Wet Atmospheres

  • Favergeon, J. (Laboratoire ROBERVAL, FRE CNRS 2833, Centre de Recherches de Royallieu, Universite de Technologie de Compiegne) ;
  • Makni, A. (Laboratoire ROBERVAL, FRE CNRS 2833, Centre de Recherches de Royallieu, Universite de Technologie de Compiegne) ;
  • Moulin, G. (Laboratoire ROBERVAL, FRE CNRS 2833, Centre de Recherches de Royallieu, Universite de Technologie de Compiegne) ;
  • Berger, P. (Laboratoire Pierre Sue, CEA / CNRS, Centre d'Etudes Nucleaires de Saclay) ;
  • Lahoche, L. (Laboratoire ROBERVAL, FRE CNRS 2833, Centre de Recherches de Royallieu, Universite de Technologie de Compiegne) ;
  • Viennot, M. (Laboratoire ROBERVAL, FRE CNRS 2833, Centre de Recherches de Royallieu, Universite de Technologie de Compiegne)
  • Published : 2008.08.01

Abstract

During the hot rolling process, steels develop an oxide scale on their surface. This scale can affect the mechanical properties of the rolled steel and its surface aspect. The main problem comes from the mechanical integrity of the oxide scales which could delaminate or crack, leading eventually to later oxide incrustation within the steel. The objective of the present work is to qualify the mechanical integrity of the iron oxide scales during the hot rolling process. The laboratory experiments use a four point bending test to simulate the mechanical solicitation which takes place during the rolling sequence of the steel slabs. The oxide scales grow on a mild steel at $900^{\circ}C$ under wet or dry atmosphere and the oxidized steel is then mecahnically tested at $900^{\circ}C$ or $700^{\circ}C$. The high temperature four point bending tests are completed with microstructural observations and with the record of acoustic emission to follow in-situ the mechanical damages of the oxide scales. The results show the role of water vapor which promotes the scale adherence, and the role of the temperature as the oxide are more damaged at $700^{\circ}C$ than at $900^{\circ}C$.

Keywords

References

  1. M. Krzyzanowski and J. H. Beynon, Metal Forming Science and Practice, p. 259, J. G. Lenard (Ed.), Elsevier, Amsterdam, 2002
  2. B. Picque, Experimental study and numerical simulation of iron oxide scales mechanical behavior in hot rolling, p. 24, PhD thesis, Ecole des Mines de Paris, France (2004)
  3. S. Frydman and A. Pszonka, Materials Science and Engineering, 40, 191 (1979) https://doi.org/10.1016/0025-5416(79)90189-7
  4. M. Boinet, S. Verdier, S. Maximovitch, and F. Dalard, Surface and Coatings Technology, 199, 141 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.145
  5. J. Favergeon, A. Makni, G. Moulin and L. Lahoche, Proc. of the Eurocorr Conference, Lisboa, Portugal (2005)
  6. A. P. Grosvenor, B. A. Kobe, and N. S. McIntyre, Surface Science, 574, 317 (2005) https://doi.org/10.1016/j.susc.2004.10.043
  7. S. J. Roosendaal, J. P. R. Bakker, A. M. Vredenberg and F. H. P. M. Habraken, Surface Science, 494, 197 (2001) https://doi.org/10.1016/S0039-6028(01)01325-5
  8. P. Hancock and J. R. Nicholls, Materials Science and Technology, 4, 398 (1988) https://doi.org/10.1179/026708388790331456
  9. M. Torresa and R. Colas, Journal of Materials Processing and Technology, 105, 258 (2000) https://doi.org/10.1016/S0924-0136(00)00569-0
  10. D. P. Burke and R. L. Higginson, Scripta Materialia, 42, 277 (2000) https://doi.org/10.1016/S1359-6462(99)00341-3
  11. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Arnold, London (1983)
  12. W. H. Sun, A. K. Tieu, Z. Y. Jiang, H. T. Zhu, and C. Lu, Journal of Materials Processing and Technology, 155/156, 1300 (2004) https://doi.org/10.1016/j.jmatprotec.2004.04.172
  13. Y. Hidaka, T. Anraku, and N. Otsuka, Oxidation of Metals, 59(1-2), (2003) https://doi.org/10.1023/A:1023095230343
  14. Y. Hidaka, T. Anraku, and N. Otsuka, Materials Science Forum, 369-372, 555 (2001)
  15. B. Picque, P. O. Bouchard, P. Montmitonnet, and M. Picard, Wear, 260, 231 (2006) https://doi.org/10.1016/j.wear.2005.03.037
  16. M. Krzyzanowski, J. H. Beynon, and C. M. Sellars, Metallurgical and Materials Transactions B, 21B, 1483 (2000)
  17. G. Moulin, A. Makni, J. Favergeon, L. Lahoche, M. Viennot, and P. Berger, Ceramics, 92, 89 (2005)
  18. T. Asai, T. Soshirod, and M. Miyahara, ISIJ International, 37, 272 (1997) https://doi.org/10.2355/isijinternational.37.272
  19. P. Berger, G. Moulin, and M. Viennot, Nuclear Inst and Methods in Physics Research B, 130, 717 (1997) https://doi.org/10.1016/S0168-583X(97)00365-0