DOI QR코드

DOI QR Code

Differential Proteomic Analysis of Secreted Proteins from Cutinase-producing Bacillus sp. SB-007

  • Ban, Yeon-Hee (School of Life Science, Chungbuk National University) ;
  • Jeon, Mi-Ri (College of Agriculture, Life & Environmental Sciences, Chungbuk National University) ;
  • Yoon, Ji-Hee (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Park, Jae-Min (School of Life Science, Chungbuk National University) ;
  • Um, Hyun-Ju (School of Life Science, Chungbuk National University) ;
  • Kim, Dae-Soon (School of Life Science, Chungbuk National University) ;
  • Jung, Seung-Ki (Bioresource Inc.) ;
  • Kim, Keun-Young (Bioresource Inc.) ;
  • Lee, Jee-Won (Department of Chemical and Biological Engineering, Korea University) ;
  • Min, Ji-Ho (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Kim, Yang-Hoon (School of Life Science, Chungbuk National University)
  • 발행 : 2008.06.30

초록

Bacillus sp. SB-007 was isolated from pea leaves harvested from the southwestern parts of South Korea through screening on a minimal medium containing 0.2% purified cutin for its ability to induce the cutinase production. However, no cutinase was produced when it was grown in a minimal medium containing 0.2% glucose. A proteomic approach was applied to separate and characterize these differentially secreted proteins. The expression level of 83 extracellular proteins of the cutinase-producing Bacillus sp. strain SB-007 incubated in a cutinase-induced medium increased significantly as compared with that cultured in a non cutinase-induced medium containing glucose. The extracellular proteome of Bacillus sp. SB-007 includes proteins from different functional classes, such as enzymes for the degradation of various macromolecules, proteins involved in energy metabolism, sporulation, transport/binding proteins and lipoproteins, stress inducible proteins, several cellular molecule biosynthetic pathways and catabolism, and some proteins with an as yet unknown function. In addition, the two protein spots showed little similarities with the known lipolytic enzymes in the database. These secreted proteome analysis results are expected to be useful in improving the Bacillus strains for the production of industrial cutinases.

키워드

참고문헌

  1. Antelmann, H., Darmon, E., Noone, D., Veening, J. W., Westers, H., Bron, S., Kuipers, O. P., Devine, K. M., Hecker, M. and van Dijl, J. M. 2003. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol. Microbiol. 49:143-156. https://doi.org/10.1046/j.1365-2958.2003.03565.x
  2. Antelmann, H., Sapolsky, R., Miller, B., Ferrari, E., Chotani, G., Weyler, W., Gaertner, A. and Hecker, M. 2004. Quantitative proteome profiling during the fermentation process of pleiotropic Bacillus subtilis mutants. Proteomics 4:2408-2424. https://doi.org/10.1002/pmic.200300752
  3. Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Diji, J. M. and Hecker, M. 2001. A proteomic view on genome-based signal peptide predictions. Genome Res. 11:1484-1502. https://doi.org/10.1101/gr.182801
  4. Buttner, K., Bernhardt, J., Scharf, C., Schmid, R., Mader, U., Eymann, C., Antelmann, H., Volker, A., Volker, U. and Hecker, M. 2001. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22:2908-2935. https://doi.org/10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
  5. Chander, H. and Ranganathan, G. 1975. Role of amino acids on the growth and lipase production of Streptococcus faecalis. Experientia 31:1263.
  6. Chen, Z., Franco, C. F., Baptista, R. P., Cabral, J. M., Coelho, A. V., Rodrigues, C. J. Jr. and Melo, E. P. 2006. Purification and identification of cutinase from Colletotrichum kahawae and Colletotrichum gloeosporioides. Appl. Microbiol. Biotechnol. 73:1306-1313. https://doi.org/10.1007/s00253-006-0605-1
  7. Chu, P. W., Yap, M. N., Wu, C. Y., Huang, C. M., Pan, F. M., Tseng, M. J. and Chen, S. T. 2000. A proteomic analysis of secreted proteins from xylan-induced Bacillus sp. strain K-1. Electrophoresis 21:1740-1745. https://doi.org/10.1002/(SICI)1522-2683(20000501)21:9<1740::AID-ELPS1740>3.0.CO;2-N
  8. Coppee, J. Y., Auger, S., Turlin, E., Sekowska, A., Le Caer, J. P., Labas, V., Vagner, V., Danchin, A. and Martin-Verstraete, I. 2001. Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 147:1631-1640. https://doi.org/10.1099/00221287-147-6-1631
  9. Cristina, M. L. C., Maria, R. A. B. and Joaquim, M. S. C. 1998. Cutinase structure, function and biocatalytic applications. Electronic J. Biotechnol. 1:160-173. https://doi.org/10.2225/vol1-issue3-fulltext-8
  10. Cristina, M. L. C., Maria, R. A. B. and Joaquim, M. S. C. 1999. Cutinase: from molecular level to bioprocess development. Biotechnol. Bioeng. 66:17-34. https://doi.org/10.1002/(SICI)1097-0290(1999)66:1<17::AID-BIT2>3.0.CO;2-F
  11. Dartois, V., Baulard, A., Schanck, K. and Colson, C. 1992. Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim. Biophys. Acta. 1131:253-260. https://doi.org/10.1016/0167-4781(92)90023-S
  12. Eggert, T., Pencreac'h, G., Douchet, I., Verger, R. and Jaeger, K. E. 2000. A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 267:6459-6469. https://doi.org/10.1046/j.1432-1327.2000.01736.x
  13. Eggert, T., van Pouderoyen, G., Dijkstra, B. W. and Jaeger, K. E. 2001. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett. 502:38-92.
  14. Egmond, M. R. and de Vlieg, J. 2000. Fusarium solani pisi cutinase. Biochimie 82:1015-1021. https://doi.org/10.1016/S0300-9084(00)01183-4
  15. Flipsen, J. A. C., Appel, A. C. M., Van der Hijden, H. T. W. M. and Verrips, C.T. 1998. Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process. Enzyme Micro. Technol. 23:274-280. https://doi.org/10.1016/S0141-0229(98)00050-7
  16. Gerard, H. C., Fett, W. F., Osman, S. F. and Moreau, R. A. 1993. Evaluation of cutinase activity of various industrial lipases. Biotechnol. Appl. Biochem. 17:181-189.
  17. Hirose, I., Sano, K., Shioda, I., Kumano, M., Nakamura, K. and Yamane, K. 2000. Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Electrophoresis 146:65-75.
  18. Honjo, M., Nakayama, A., Fukazawa, K., Kawamura, K., Ando, K., Hori, M. and Furutani, Y. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172:1783-1790. https://doi.org/10.1128/jb.172.4.1783-1790.1990
  19. Jongbloed, J. D., Antelmann, H., Hecker, M., Nijland, R., Bron, S., Airaksinen, U., Pries, F., Quax, W. J., van Dijl, J. M., Braun, P. G. 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277:44068-44078. https://doi.org/10.1074/jbc.M203191200
  20. Kim, D. H. 2003. Modulation of a fungal signaling by Hypovirus. Plant Pathol. J. 19:30-33. https://doi.org/10.5423/PPJ.2003.19.1.030
  21. Kim, Y. H., Ahn, J. Y., Moon, S. H. and Lee, J. 2005. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. Chemosphere 60:1349-1355. https://doi.org/10.1016/j.chemosphere.2005.02.023
  22. Kim, Y. H., Lee, J., Ahn, J. Y., Gu, M. B. and Moon, S. H. 2002. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 68:4684-4688. https://doi.org/10.1128/AEM.68.9.4684-4688.2002
  23. Kim, Y. H., Lee, J. and Moon, S. H. 2003. Uniqueness of microbial cutinases in hydrolysis of p-nitrophenyl esters. J. Microbiol. Biotechnol. 13:57-63.
  24. Kolattukudy, P. E. 1984. Cutinase from fungi and pollen. In: Lipase, ed. by B. Borgstrom and T. Brockman, pp. 471-504. Elsevier, Amsterdam.
  25. Lin, T. S. and Kolattukudy, P. E. 1980. Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N terminus. Eur. J. Biochem. 106:341-351. https://doi.org/10.1111/j.1432-1033.1980.tb04580.x
  26. Majoul, T., Bancel, E., Triboi, E., Hamida, J. B. and Branlard, G. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from total endosperm. Proteomics 3:175-183. https://doi.org/10.1002/pmic.200390026
  27. Martin-Verstraete, I., Deutscher, J., Galinier, A. 1999. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J. Bacteriol. 181:2966-2969.
  28. Martinez, C., De Geus, P., Lauwereys, M., Matthysens, G. and Cambillau, C. 1992. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615-618. https://doi.org/10.1038/356615a0
  29. Masayama, A., Kuwana, R., Takamatsu, H., Hemmi, H., Yoshimura, T., Watabe, K. and Moriyama, R. 2007. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J. Bacteriol. 189:2369-2375. https://doi.org/10.1128/JB.01527-06
  30. Murphy, C. A., Cameron, J. A., Huang, S. J. and Vinopal, R. T. 1998. A second polycaprolactone depolymerase from Fusarium, a lipase distant from cutinase. Appl. Microbiol. Biotechnol. 50:692-696. https://doi.org/10.1007/s002530051352
  31. Petersen, M. T. N., Martel, P., Petersen, E. I., Drablos, F. and Pertersen, S. B. 1997. Surface and electrostatics of cutinases. Methods in enzymology Vol. 284, ed. by B. Rubin and E.A. Dennis, pp. 130-154. Academics, New York.
  32. Poulose, A. J. and Kolattukudy, P. 1988. Enzymes as agricultural chemical adjuvants. European Patent 0,272,002 A1.
  33. Poulsen, K. R., Sorensen, T. K., Duroux, L., Petersen, E. I., Petersen, S. B. and Wimmer, R. 2006. The interaction of Fusarium solani pisi cutinase with long chain spin label esters. Biochemistry 45:9163-9171. https://doi.org/10.1021/bi060329i
  34. Schaad, N. W. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria 2nd Edition.
  35. Shimao, M. 2001. Biodegradation of plastics. Curr. Opin. Biotechnol. 12:242-247. https://doi.org/10.1016/S0958-1669(00)00206-8
  36. Sinchaikul, S., Sookkheo, B., Topanuruk, S., Juan, H. F., Phutrakul, S. and Chen, S. T. 2002. Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771:261-287. https://doi.org/10.1016/S1570-0232(02)00054-5
  37. Soliday, C. L. and Kolattukudy, P. E. 1983. Primary structure of the active site region of fungal cutinase, an enzyme involved in phytopathogenesis. Biochem Biophys Res Commun. 114:1017-1022. https://doi.org/10.1016/0006-291X(83)90663-0
  38. Staley, J. T., Bryant, M. P., Pfennig, N. and Holt, J. G. 1989. Bergey's Manual of Systematic Bacteriology, Vol. 3, ed. by Williams and Wilkins, Baltimore.
  39. Thierry, R. 1999. Silver staining of 2-D electrophoresis gels. Methods Mol. Biol. 112:297-311.
  40. Tjalsma, H., Antelmann, H., Jongbloed, J. D., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J. Y., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M., van Dijl, J. M. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol. Mol. Biol. Rev. 68:207-233. https://doi.org/10.1128/MMBR.68.2.207-233.2004
  41. Um, H. J., Seo, H. S., Min, J. H., Rhee, S. K., Cho, T. J., Kim, Y. H. and Lee, J. W. 2007. Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res. 7:1035-1045. https://doi.org/10.1111/j.1567-1364.2007.00251.x
  42. van Dijl, J. M., Bolhuis, A., Tjalsma, H., Jongbloed, J. D. H., de Jong, A. and Bron, S. 2001. Protein transport pathways in Bacillus subtilis: a genome-based road map. In: Bacillus Subtilis and its Closest Relatvies: from Genes to Cells., ed. by A. L. Sonenshein, J. A. Hoch and R. Losick., pp. 337-355. American Society for Microbiology Press, Washington, DC, USA.
  43. Vilain, S. and Brozel, V. S. 2006. Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J. Proteome Res. 5:1924-1930. https://doi.org/10.1021/pr050402b
  44. Voigt, B., Hoi le, T., Jurgen, B., Albrecht, D., Ehrenreich, A., Veith, B., Evers, S., Maurer, K. H., Hecker, M. and Schweder, T. 2007. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7:413-423. https://doi.org/10.1002/pmic.200600556
  45. Voigt, B., Schweder, T., Sibbald, M. J., Albrecht, D., Ehrenreich, A., Bernhardt, J., Feesche, J., Maurer, K. H., Gottschalk, G., van Dijl, J. M. and Hecker, M. 2006. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268-281. https://doi.org/10.1002/pmic.200500091
  46. Wilhelm, S. 1993. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1:69-71. https://doi.org/10.1016/0966-842X(93)90037-R
  47. Williams, S. T., Sharpe, M. E. and Holt, J. G. 1989. Bergey's Manual of Systematic Bacteriology, Vol. 4. ed. by Williams and Wilkins, Baltimore.
  48. Yoshida, K., Kobayashi, K., Miwa, Y., Kang, C. M., Matsunaga, M., Yamaguchi, H., Tojo, S., Yamamoto, M., Nishi, R., Ogasawara, N., Nakayama, T. and Fujita, Y. 2001. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29:683-692. https://doi.org/10.1093/nar/29.3.683

피인용 문헌

  1. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone vol.50, pp.3, 2010, https://doi.org/10.1002/jobm.200900099
  2. Biodegradation of diisodecyl phthalate (DIDP) by Bacillus sp. SB-007 vol.49, pp.S1, 2009, https://doi.org/10.1002/jobm.200800297
  3. Proteome Analyses of Soil Bacteria Grown in the Presence of Potato Suberin, a Recalcitrant Biopolymer vol.31, pp.4, 2016, https://doi.org/10.1264/jsme2.ME15195