DOI QR코드

DOI QR Code

Analysis on Phase Relation between Inertia Force and Dynamic Earth Pressure of Caisson by Numerical Analysis

수치해석을 이용한 우물통 기초의 관성력과 동적토압의 위상관계 분석

  • 김성렬 (동아대학교 토목공학부) ;
  • 장학성 ((주)유신 코퍼레이션 지반본부)
  • Published : 2008.04.30

Abstract

Dynamic earth pressure acting on geotechnical structures can be driving force or resisting force for the displacement of the structure according to the phase relation between the dynamic earth pressure and inertia force of structures. In this research, the evaluation procedure of the phase relation between the dynamic earth pressure and the inertia force was proposed. According to the procedure, numerical analyses on caisson foundation of bridges were performed and the phase relation was analyzed. The analysis results showed that the dynamic earth pressure becomes the driving force, which increases the displacement of the structure, if the displacement amplitude of ground is larger than that of structure due to the low stiffness of the ground, and the dynamic earth pressure becomes the resisting force against the displacement of the structure if the displacement amplitude of ground is smaller than that of structure due to the high stiffness of the ground.

지진시 구조물에 작용하는 동적토압은 구조물 관성력과 동적토압의 위상관계에 따라 구조물의 변위에 대한 하중 또는 저항력으로 발휘될 수 있다. 본 연구에서는 위상관계를 고려한 동적토압 산정 절차를 제안하고, 이 절차에 따라 교량 우물통 기초에 대한 수치해석을 수행하여 구조물 관성력과 동적토압의 위상관계를 분석하였다. 그 결과, 지반강성이 작아서 지반의 변위진폭이 구조물의 변위 진폭보다 큰 경우에는 동적토압이 구조물의 변위를 증가시키는 하중으로 발휘되며, 지반강성이 커서 지반의 변위진폭이 구조물의 변위진폭보다 작은 경우에는 동적토압이 구조물의 변위를 감소시키는 저항력으로 발휘되는 것으로 나타났다.

Keywords

References

  1. 김성렬, 권오순, 김명모, "지진시 중력식 안벽에 작용하는 하중성분의 모델링" 한국지반공학회논문집, 19(2), 2003, pp. 107-121
  2. 김동현, 윤길림, 박우선, "지진토압의 위상차를 고려한 케이슨 안벽의 신뢰성해석" 한국해안해양공학회지, 15(4), 2003, pp. 242-248
  3. 윤석재, 김성렬, 황재익, 김명모, "옹벽의 활동에 따른 배면 동적토압의 변화" 한국지반공학회논문집, 21(8), 2005, pp. 55-61
  4. Watanabe K., Kobayashi Y., and Towhata I., "Shaking table tests on seismic earth pressure exerted on retaining wall model."Proc., the Second International Conference on Earthquake Geotechnical Engineering, A.A. Balkema, Rotterdam, Vol. 1, 1999, pp. 297-302
  5. Kohama, E., A study on the stability of gravity type quay wall during earthquake, PhD. Thesis, Hokkaido University, 2000
  6. Sato, M., Watanabe, H., Takeda, T., and Shimada, M., "Simplified method to evalaute caisson type quay wall movement" 12th World Conference on Earthquake Engineering, Auckland, New Zealand, paper No. 1440, 2000
  7. Sun, J.I., Golesorkhi, R. and Seed, H.B., "Dynamic moduli and damping ratios for cohesive soils" Report No. EERC-88/15, Earthquake Engineering Research Center, University of California, Berkeley, 1988
  8. Seed, H.B and Idriss, I.M., "Soil moduli and damping factors for dynamic response analyses" Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, 1970
  9. Schnabel, P. B., Lysmer, J., and Seed, B.H., "HAKE - A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," EERC Report, no. 72-12, Berkeley, University of California, 1972
  10. Geo-Slope, QUAKE/W User' Guide, 2003
  11. Itasca Consulting Group, Inc., FLAC User' Manual, 1995
  12. Canadian Geotechnical Society, Canadian Foundation Engineering Manual, 4th Edition, 2006
  13. 해양수산부, 항만 및 어항설계기준, 2005
  14. Gasparini, D.A., and Vanmarcke, E.H., "Simulated Earthquake Motions Compatible with Prescribed Response Spectra" Evaluation of Seismic Safety of Buildings Report No. 2, MIT Dept. of Civil Eng., Cambridge, Massachusettes, January, 1976