초록
본 연구에서는 오차항이 AR(1)을 따르는 회귀모형에서 올바른 추론을 도출하고자 모형식별의 문제를 다루었다. 이를 위해 Box-Cox 변환된 회귀모형을 고려하여 (i) Box-Cox 변환모형과 AR(1) 오차에 대한 동시 검정, (ii) AR(1) 오차가 존재하는 모형에서의 Box-Cox 변환모형에 대한 검정 그리고 (iii) 모형이 Box-Cox 변환되어 있을 때 오차가 AR(1) 과정을 따르는지에 대한 LM 검정통계량을 유도하였다. 특히 LM 검정방법에서 여러개의 모수가 비선형관계를 형성하고있어 정보행렬의 추정은 계산상 매우 어렵다. 따라서 정보행렬의 원소에 대한 기대값을 구함에 있어 Taylor전개를 이용하여 정보행렬을 구하고 이에 기반을 둔 LM 검정통계량($LM_E$)를 제안하고 모의실험결과 $LM_E$가 기존의 헤시안행렬에 기반을 둔 LM 검정통계량($LM_H$)에 비하여 유의수준을 잘 유지하고 있는 것으로 나타났다.
This paper derives joint and conditional Lagrange multiplier tests based on information matrix for testing functional form and/or the presence of autocorrelation in a regression model. Small sample properties of these tests are assessed by Monte Carlo study and comparisons are made with LM tests based on Hessian matrix. The results show that the proposed $LM_E$ tests have the most appropriate finite sample performance.