Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone

  • 임정혁 (충남대학교 바이오응용화학부 고분자공학) ;
  • 이용규 (충주대학교 화공생물공학) ;
  • 허강무 (충남대학교 바이오응용화학부 고분자공학)
  • Im, Jeong-Hyuk (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Yong-Kyu (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Huh, Kang-Moo (School of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 발행 : 2008.03.31

초록

생체적합성을 가진 친수성 poly(ethylene glycol)(PEG)블록과 생분해성 고분자인 Poly(D,L-lactide)(PLA) 또는 poly(lactide-co-glycolide)(PLGA)를 소수성 블록으로 하는 양친성 이중 블록공중합체를 합성하여 난용성 당뇨병 치료제인 pioglitazone의 가용화를 위한 고분자 미셀을 제조하였다. PEG 말단으로부터 LA의 개환중합에 의해 합성된 고분자의 화학적 조성과 분자량은 반응액 내 당량비로 조절하였고, 합성된 고분자는 수용액 상에서 $10{\sim}30\;nm$ 크기인 구형의 자기조립 미셀을 형성하였다($CMC=0.001{\sim}0.0076\;mg/mL$). 투석법과 고체분산법을 이용하여 약물을 봉입한 후 AFM, DLS, HPLC 분석을 통하여 미셀의 특성을 비교하였다. 결론적으로 PEG-PLA(또는 PLGA) 공중합체를 이용한 고체분산법을 통해 pioglitazone을 효과적으로 가용화시킬 수 있었다.

We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

키워드

참고문헌

  1. E. Blanco, E. A. Bey, Y. Dong, B. D. Weinberg, D. M. Sutton, D. A. Boothman, and J. Gao, J. Control. Release, 122, 365 (2007) https://doi.org/10.1016/j.jconrel.2007.04.014
  2. S. C. Kim, D. W. Kim, Y. H. Shim, J. S. Bang, H. S. Oh, S. W. Kim, and M. H. Seo, J. Control. Release, 72, 191 (2001) https://doi.org/10.1016/S0168-3659(01)00275-9
  3. K. M. Huh, S. C. Lee, Y. W. Cho, J. Lee, J. H. Jeong, and K. Park, J. Control. Release, 101, 59 (2005) https://doi.org/10.1016/j.jconrel.2004.07.003
  4. A. Lavasanifar, J. Samuel, and G. S. Kwon, Adv. Drug Deliver. Rev., 54, 169 (2002) https://doi.org/10.1016/S0169-409X(02)00015-7
  5. R. T. Liggins and H. M. Burt, Adv. Drug Deliver. Rev., 54, 191 (2002) https://doi.org/10.1016/S0169-409X(02)00016-9
  6. J.-P. Xu, J. Ji, W. -D. Chen, and J. -C. Shen, J. Control. Release, 107, 502 (2005). https://doi.org/10.1016/j.jconrel.2005.06.013
  7. Y. Yamamoto, K. Yasugi, A. Harada, Y. Nagasaki, and K. Kataoka, J. Control. Release, 82, 359 (2002) https://doi.org/10.1016/S0168-3659(02)00147-5
  8. Y. W. Cho, J. Lee, S. C. Lee, K. M. Huh, and K. Park, J. Control. Release, 97, 249 (2004) https://doi.org/10.1016/j.jconrel.2004.03.013
  9. K. Na, K. H. Lee, D. H. Lee, and Y. H. Bae, Eur. J. Pharm. Sci., 27, 115 (2006) https://doi.org/10.1016/j.ejps.2005.08.012
  10. J. Zhang, W. Jiang, X. Zhao, and Y. Wang, Tsinghua Science & Technology, 12, 493 (2007) https://doi.org/10.1016/S1007-0214(07)70073-1
  11. T. Ooya, K. M. Huh, M. Saitoh, E. Tamiya, and K. Park, Science and Technology of Advanced Materials, 6, 452 (2005) https://doi.org/10.1016/j.stam.2005.01.006
  12. G. S. Kwon and K. Kataoka, Adv. Drug. Deliver. Rev., 16, 295 (1995) https://doi.org/10.1016/0169-409X(95)00031-2
  13. G. S. Kwon and T. Okano, Adv. Drug. Deliver. Rev., 21, 107 (1996) https://doi.org/10.1016/S0169-409X(96)00401-2
  14. G. Gaucher, M.-H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. -C. Leroux, J. Control. Release, 109, 169 (2005) https://doi.org/10.1016/j.jconrel.2005.09.034
  15. T. G. Park, W. Lu, and G. Crotts, J. Control. Release, 33, 211 (1995) https://doi.org/10.1016/0168-3659(94)00084-8
  16. L. Hongbo, J. Anna, G. Jian, and E. U. Kathryn, J. Polym. Sci.; Part A: Polym. Chem., 37, 703 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<703::AID-POLA5>3.0.CO;2-O
  17. Y. H. Bae, K. M. Huh, Y. Kim, and K. -H. Park, J. Control. Release, 64, 3 (2000) https://doi.org/10.1016/S0168-3659(99)00126-1
  18. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  19. A. Lavasanifar, J. Samuel, and G. S. Kwon, J. Control. Release, 77, 155 (2001) https://doi.org/10.1016/S0168-3659(01)00477-1
  20. S. K. Agrawal, N. Sanabria-DeLong, J. M. Coburn, G. N. Tew, and S. R. Bhatia, J. Control. Release, 112, 64 (2006) https://doi.org/10.1016/j.jconrel.2005.12.024
  21. A. K. Rai and D. K. Rai, Spectrochim. Acta, 59, 1673 (2003) https://doi.org/10.1016/S1386-1425(02)00405-5
  22. T. Radhakrishna, D. Sreenivas Rao, and G. Om Reddy, J. Pharmaceut. Biomed. Anal., 29, 593 (2002) https://doi.org/10.1016/S0731-7085(02)00036-5
  23. P. Sripalakit, P. Neamhom, and A. Saraphanchotiwitthaya, J. Chromatogr. B, 843, 164 (2006) https://doi.org/10.1016/j.jchromb.2006.05.032
  24. Y. J. Xue, K. C. Turner, J. B. Meeker, J. Pursley, M. Arnold, and S. Unger, J. Chromatogr. B, 795, 215 (2003) https://doi.org/10.1016/S1570-0232(03)00575-0
  25. H. M. Burt, X. Zhang, P. Toleikis, L. Embree, and W. L. Hunter, Colloid. Surface B, 16, 161 (1999) https://doi.org/10.1016/S0927-7765(99)00067-3
  26. M. L. Adams, D. R. Andes, and G. S. Kwon, Biomacromolecules, 4, 750 (2003) https://doi.org/10.1021/bm0257614
  27. M. L. Adams and G. S. Kwon, J. Control. Release, 87, 23 (2003) https://doi.org/10.1016/S0168-3659(02)00347-4